/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
/**
* <p>
* @author Written by Luciano S�nchez (University of Oviedo) 27/02/2004
* @author Modified by Enrique A. de la Cal (University of Oviedo) 13/12/2008
* @version 1.0
* @since JDK1.4
* </p>
*/
package keel.Algorithms.Shared.ClassicalOptim;
public class SquaresErrorQUAD extends FUN {
/**
* <p>
* Derived class from FUN that implements the error for a perceptron trained with quadratic conjugated gradient.
*
* </p>
*
*/
//input examples
double[][] input;
//expected output
double[][] output;
//Neural network container.
public ConjGradQUAD Cua;
/**
* <p>
* Constructor of an error calculator for neural network based on the quadratic conjugated gradient.
*
* </p>
*
* @param vCua the perceptron.
* @param vInput input examples
* @param vOutput expected output
*/
public SquaresErrorQUAD(ConjGradQUAD vCua, double[][]vInput, double [][]vOutput) {
Cua=vCua; input=vInput; output=vOutput;
}
/**
* Returns the training mean square error for a perceptron with weights x
*
* @param x the weights of a perceptron.
* @return the training mean square error of a perceptron with weights x.
*/
public double evaluate(double x[][][]) {
// Mean Square Error
double RMS=0;
for (int i=0;i<input.length;i++) {
double error[]=OPV.subtract(Cua.quadraticModelOutput(input[i],x),output[i]);
RMS+=OPV.multiply(error,error);
}
// Mean Square Error
return RMS/input.length;
}
}