/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD; /** * <p>Title: Farchd</p> * <p>Description: It contains the implementation of the Farchd algorithm</p> * <p>Company: KEEL </p> * @author Written by Jesus Alcala (University of Granada) 09/02/2011 * @version 1.0 * @since JDK1.6 */ import java.io.IOException; import org.core.*; public class Farchd { myDataset train, val, test; String outputTr, outputTst, fileDB, fileRB, fileTime, fileHora, data, fileRules, evolution; long rulesStage1, rulesStage2, rulesStage3; DataBase dataBase; RuleBase ruleBase; Apriori apriori; Population pop; long startTime, totalTime; //We may declare here the algorithm's parameters int nLabels, populationSize, depth, K, maxTrials, typeInference, BITS_GEN; double minsup, minconf, alpha; private boolean somethingWrong = false; //to check if everything is correct. /** * Default constructor */ public Farchd() { } /** * It reads the data from the input files (training, validation and test) and parse all the parameters * from the parameters array. * @param parameters parseParameters It contains the input files, output files and parameters */ public Farchd(parseParameters parameters) { this.startTime = System.currentTimeMillis(); this.train = new myDataset(); this.val = new myDataset(); this.test = new myDataset(); try { System.out.println("\nReading the training set: " + parameters.getTrainingInputFile()); this.train.readClassificationSet(parameters.getTrainingInputFile(), true); System.out.println("\nReading the validation set: " + parameters.getValidationInputFile()); this.val.readClassificationSet(parameters.getValidationInputFile(), false); System.out.println("\nReading the test set: " + parameters.getTestInputFile()); this.test.readClassificationSet(parameters.getTestInputFile(), false); } catch (IOException e) { System.err.println("There was a problem while reading the input data-sets: " + e); this.somethingWrong = true; } //We may check if there are some numerical attributes, because our algorithm may not handle them: //somethingWrong = somethingWrong || train.hasNumericalAttributes(); this.somethingWrong = this.somethingWrong || this.train.hasMissingAttributes(); this.outputTr = parameters.getTrainingOutputFile(); this.outputTst = parameters.getTestOutputFile(); this.fileDB = parameters.getOutputFile(0); this.fileRB = parameters.getOutputFile(1); this.data = parameters.getTrainingInputFile(); this.fileTime = (parameters.getOutputFile(1)).substring(0,(parameters.getOutputFile(1)).lastIndexOf('/')) + "/time.txt"; this.fileHora = (parameters.getOutputFile(1)).substring(0,(parameters.getOutputFile(1)).lastIndexOf('/')) + "/hora.txt"; this.fileRules = (parameters.getOutputFile(1)).substring(0,(parameters.getOutputFile(1)).lastIndexOf('/')) + "/rules.txt"; //Now we parse the parameters long seed = Long.parseLong(parameters.getParameter(0)); this.nLabels = Integer.parseInt(parameters.getParameter(1)); this.minsup = Double.parseDouble(parameters.getParameter(2)); this.minconf = Double.parseDouble(parameters.getParameter(3)); this.depth = Integer.parseInt(parameters.getParameter(4)); this.K = Integer.parseInt(parameters.getParameter(5)); this.maxTrials = Integer.parseInt(parameters.getParameter(6)); this.populationSize = Integer.parseInt(parameters.getParameter(7)); if (this.populationSize%2 > 0) this.populationSize++; this.alpha = Double.parseDouble(parameters.getParameter(8)); this.BITS_GEN = Integer.parseInt(parameters.getParameter(9)); this.typeInference = Integer.parseInt(parameters.getParameter(10)); Randomize.setSeed(seed); } /** * It launches the algorithm */ public void execute() { if (this.somethingWrong) { //We do not execute the program System.err.println("An error was found, either the data-set has missing values."); System.err.println("Please remove the examples with missing data or apply a MV preprocessing."); System.err.println("Aborting the program"); //We should not use the statement: System.exit(-1); } else { //We do here the algorithm's operations this.dataBase = new DataBase(this.nLabels, this.train); this.ruleBase = new RuleBase(this.dataBase, this.train, this.K, this.typeInference); this.apriori = new Apriori(this.ruleBase, this.dataBase, this.train, this.minsup, this.minconf, this.depth); this.apriori.generateRB(); this.rulesStage1 = this.apriori.getRulesStage1(); this.rulesStage2 = (long) this.ruleBase.size(); pop = new Population(this.train, this.dataBase, this.ruleBase, this.populationSize, this.BITS_GEN, this.maxTrials, this.alpha); pop.Generation(); System.out.println("Building classifier"); this.ruleBase = pop.getBestRB(); this.rulesStage3 = (long) this.ruleBase.size(); this.dataBase.saveFile(this.fileDB); this.ruleBase.saveFile(this.fileRB); //Finally we should fill the training and test output files doOutput(this.val, this.outputTr); doOutput(this.test, this.outputTst); totalTime = System.currentTimeMillis() - startTime; this.writeTime(); this.writeRules(); System.out.println("Algorithm Finished"); } } public void writeRules() { String stringOut = new String(""); stringOut = "" + rulesStage1 + " " + rulesStage2 + " " + rulesStage3 + "\n"; Files.addToFile(this.fileRules, stringOut); } public void writeTime() { long aux, seg, min, hor; String stringOut = new String(""); stringOut = "" + totalTime / 1000 + " " + data + "\n"; Files.addToFile(this.fileTime, stringOut); totalTime /= 1000; seg = totalTime % 60; totalTime /= 60; min = totalTime % 60; hor = totalTime / 60; stringOut = ""; if (hor < 10) stringOut = stringOut + "0"+ hor + ":"; else stringOut = stringOut + hor + ":"; if (min < 10) stringOut = stringOut + "0"+ min + ":"; else stringOut = stringOut + min + ":"; if (seg < 10) stringOut = stringOut + "0"+ seg; else stringOut = stringOut + seg; stringOut = stringOut + " " + data + "\n"; Files.addToFile(this.fileHora, stringOut); } /** * It generates the output file from a given dataset and stores it in a file * @param dataset myDataset input dataset * @param filename String the name of the file */ private void doOutput(myDataset dataset, String filename) { String output = new String(""); output = dataset.copyHeader(); //we insert the header in the output file //We write the output for each example for (int i = 0; i < dataset.getnData(); i++) { //for classification: output += dataset.getOutputAsString(i) + " " + this.classificationOutput(dataset.getExample(i)) + "\n"; } Files.writeFile(filename, output); } /** * It returns the algorithm classification output given an input example * @param example double[] The input example * @return String the output generated by the algorithm */ private String classificationOutput(double[] example) { String output = new String("?"); /** Here we should include the algorithm directives to generate the classification output from the input example */ int clas = this.ruleBase.FRM(example); if (clas >= 0) { output = train.getOutputValue(clas); } return output; } }