/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.PSO_Learning.PSOLDA; /** * <p>Title: AD</p> * * <p>Company: KEEL</p> * * @author Jose A. Saez Munoz * @version 1.0 */ import keel.Algorithms.Statistical_Classifiers.Shared.MatrixCalcs.*; public class AD{ double COVAR[][][]; double MEDIA[][][]; double ejemplos[][]; double deseado[][]; int nentradas; int nsalidas; int nelem; int nejemplos[]; public AD(double [][]vejemplos, double [][]vdeseado) { ejemplos=vejemplos; deseado=vdeseado; nentradas=ejemplos[0].length; nsalidas=deseado[0].length; nelem=ejemplos.length; COVAR=new double[nsalidas][nentradas][nentradas]; MEDIA=new double[nsalidas][nentradas][1]; nejemplos=new int[nsalidas]; for (int i=0;i<nelem;i++) { for (int s=0;s<nsalidas;s++) if (deseado[i][s]!=0) { nejemplos[s]++; } } } public void CalculaParametros() throws ErrorDimension, ErrorSingular { // If 'lineal' is true, Every covariance matrix are equal for (int i=0;i<nelem;i++) { for (int s=0;s<nsalidas;s++) if (deseado[i][s]!=0){ MEDIA[s]=MatrixCalcs.matsum(MEDIA[s], MatrixCalcs.columna(ejemplos[i])); } } for (int s=0;s<nsalidas;s++) MEDIA[s]=MatrixCalcs.matmul(MEDIA[s],1.0f/nejemplos[s]); double tmp[][]; // Every calculus are made over COVAR[0] for(int i=0;i<nelem;i++) { for (int s=0;s<nsalidas;s++) if (deseado[i][s]!=0) { tmp=MatrixCalcs.matsum(MatrixCalcs.columna(ejemplos[i]),MatrixCalcs.matmul(MEDIA[s],-1.0f)); tmp=MatrixCalcs.matmul(tmp,MatrixCalcs.tr(tmp)); COVAR[0]=MatrixCalcs.matsum(COVAR[0],tmp); } } // Covariance matrix is inverted COVAR[0]=MatrixCalcs.matmul(COVAR[0],1.0f/nelem); COVAR[0]=MatrixCalcs.inv(COVAR[0]); // Results are copied to every matrix for (int s=1;s<nsalidas;s++){ for (int i=0;i<COVAR[s].length;i++) for (int j=0;j<COVAR[s][i].length;j++) COVAR[s][i][j]=COVAR[0][i][j]; } } public double [] distancias(double []x) throws ErrorDimension,ErrorSingular { // Distance from each example to each prototype is calculated double d[]=new double[nsalidas]; double g[][]; double [][]cx=MatrixCalcs.columna(x); for (int s=0;s<nsalidas;s++) { //Linear term double [][]w=MatrixCalcs.tr(MatrixCalcs.matmul(COVAR[s],MEDIA[s])); g=MatrixCalcs.matmul(w,cx); // Constant term double[][] C1=MatrixCalcs.matmul(MatrixCalcs.tr(MEDIA[s]), MatrixCalcs.matmul(COVAR[s],MEDIA[s])); C1=MatrixCalcs.matmul(C1,-0.5f); double C2=0.5f*(double)Math.log(MatrixCalcs.determinante(COVAR[s])); double C3=(double)Math.log(nejemplos[s]/(double)nelem); d[s]=g[0][0]+C1[0][0]+C2+C3; } return d; } public String[] Coeficientes() throws ErrorDimension,ErrorSingular { String res=""; String discriminantes[]=new String[nsalidas]; for (int s=0 ; s<nsalidas ; s++){ discriminantes[s]=""; res=""; //Linear term double [][]w=MatrixCalcs.tr(MatrixCalcs.matmul(COVAR[s],MEDIA[s])); res+="\n\tDiscriminant coefficients:\n"; for(int ii=0 ; ii<w.length ; ++ii) for(int jj=0 ; jj<w[0].length ; ++jj) res+="\t\tw"+jj+" = "+w[ii][jj]+"\n"; // Constant term double[][] C1=MatrixCalcs.matmul(MatrixCalcs.tr(MEDIA[s]), MatrixCalcs.matmul(COVAR[s],MEDIA[s])); C1=MatrixCalcs.matmul(C1,-0.5f); double C2=0.5f*(double)Math.log(MatrixCalcs.determinante(COVAR[s])); double C3=(double)Math.log(nejemplos[s]/(double)nelem); res+="\n\tConstant term:\n\t\tb"+s+" = "+(C1[0][0]+C2+C3)+"\n\n"; discriminantes[s]+=res; } return discriminantes; } public int argmax(double []x){ double max=x[0]; int imax=0; for (int i=1;i<x.length;i++) if (x[i]>max) { max=x[i]; imax=i; } return imax; } }