/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. Sánchez (luciano@uniovi.es) J. Alcalá-Fdez (jalcala@decsai.ugr.es) S. García (sglopez@ujaen.es) A. Fernández (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // SSMA.javA HIBRIDO LVq3 // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 3-10-2005. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Instance_Generation.SSMALVQ3; import keel.Algorithms.Preprocess.Basic.*; import keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator; import keel.Algorithms.Instance_Generation.Basic.Prototype; import keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm; import keel.Algorithms.Instance_Generation.Basic.PrototypeSet; import keel.Algorithms.Instance_Generation.LVQ.LVQ3; import keel.Algorithms.Instance_Generation.utilities.*; //import keel.Algorithms.Instance_Generation.utilities.KNN.KNN; import keel.Dataset.Attributes; import keel.Dataset.InstanceAttributes; import keel.Dataset.InstanceSet; import org.core.*; import java.util.StringTokenizer; import java.util.Arrays; public class SSMALVQ3 extends Metodo { /*Own parameters of the algorithm*/ private long semilla; private int tamPoblacion; private double nEval; private double pCross; private double pMut; private int kNeigh; public String Script; // para releer par�metros.. private PrototypeSet trainingDataSet; private PrototypeGenerator generador; //Par�metros LVQ3: Solo me hacen falta 4; private int Maxiter; private double alpha0; private double windowW; private double epsilon; protected int numberOfClass; protected int numberOfPrototypes; // Particle size is the percentage protected int numberOfStrategies; // number of strategies in the pool public SSMALVQ3 (String ficheroScript) { super (ficheroScript); } /** * Reads the prototype set from a data file. * @param nameOfFile Name of data file to be read. * @return PrototypeSet built with the data of the file. */ public static PrototypeSet readPrototypeSet(String nameOfFile) { Attributes.clearAll();//BUGBUGBUG InstanceSet training = new InstanceSet(); try { //System.out.print("PROBANDO:\n"+nameOfFile); training.readSet(nameOfFile, true); training.setAttributesAsNonStatic(); InstanceAttributes att = training.getAttributeDefinitions(); Prototype.setAttributesTypes(att); } catch(Exception e) { System.err.println("readPrototypeSet has failed!"); e.printStackTrace(); } return new PrototypeSet(training); } /** * Implements the 1NN algorithm * @param current Prototype which the algorithm will find its nearest-neighbor. * @param dataSet Prototype set in which the algorithm will search. * @return Nearest prototype to current in the prototype set dataset. */ public static Prototype _1nn(Prototype current, PrototypeSet dataSet) { Prototype nearestNeighbor = dataSet.get(0); int indexNN = 0; //double minDist = Distance.dSquared(current, nearestNeighbor); //double minDist = Distance.euclideanDistance(current, nearestNeighbor); double minDist =Double.POSITIVE_INFINITY; double currDist; int _size = dataSet.size(); // System.out.println("****************"); // current.print(); for (int i=0; i<_size; i++) { Prototype pi = dataSet.get(i); //if(!current.equals(pi)) //{ // double currDist = Distance.dSquared(current, pi); currDist = Distance.euclideanDistance(pi,current); // System.out.println(currDist); if(currDist >0){ if (currDist < minDist) { minDist = currDist; // nearestNeighbor = pi; indexNN =i; } } //} } // System.out.println("Min dist =" + minDist + " Vecino Cercano = "+ indexNN); return dataSet.get(indexNN); } public double classficationAccuracy1NN(PrototypeSet training, PrototypeSet test) { int wellClassificated = 0; for(Prototype p : test) { Prototype nearestNeighbor = _1nn(p, training); if(p.getOutput(0) == nearestNeighbor.getOutput(0)) ++wellClassificated; } return 100.0* (wellClassificated / (double)test.size()); } /* MEzcla de algoritmos */ public void ejecutar () { int i, j, l; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; int nSel = 0; Cromosoma poblacion[]; double ev = 0; double dMatrix[][]; int sel1, sel2, comp1, comp2; Cromosoma hijos[]; double umbralOpt; boolean veryLarge; double GAeffort=0, LSeffort=0, temporal; double fAcierto=0, fReduccion=0; int contAcierto=0, contReduccion=0; int nClases; long tiempo = System.currentTimeMillis(); /*Getting the number of different classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; if (datosTrain.length > 9000) { veryLarge = true; } else { veryLarge = false; } if (veryLarge == false) { /*Construct a distance matrix of the instances*/ dMatrix = new double[datosTrain.length][datosTrain.length]; for (i = 0; i < dMatrix.length; i++) { for (j = i + 1; j < dMatrix[i].length; j++) { dMatrix[i][j] = KNN.distancia(datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu); } } for (i = 0; i < dMatrix.length; i++) { dMatrix[i][i] = Double.POSITIVE_INFINITY; } for (i = 0; i < dMatrix.length; i++) { for (j = i - 1; j >= 0; j--) { dMatrix[i][j] = dMatrix[j][i]; } } } else { dMatrix = null; } /*Random inicialization of the population*/ Randomize.setSeed (semilla); poblacion = new Cromosoma[tamPoblacion]; for (i=0; i<tamPoblacion; i++) poblacion[i] = new Cromosoma (kNeigh, datosTrain.length, dMatrix, datosTrain, realTrain, nominalTrain, nulosTrain, distanceEu); /*Initial evaluation of the population*/ for (i=0; i<tamPoblacion; i++) { poblacion[i].evaluacionCompleta(nClases, kNeigh, clasesTrain); } umbralOpt = 0; /*Until stop condition*/ while (ev < nEval) { Arrays.sort(poblacion); if (fAcierto >= (double)poblacion[0].getFitnessAc()*100.0/(double)datosTrain.length) { contAcierto++; } else { contAcierto=0; } fAcierto = (double)poblacion[0].getFitnessAc()*100.0/(double)datosTrain.length; if (fReduccion >= (1.0-((double)poblacion[0].genesActivos()/(double)datosTrain.length))*100.0) { contReduccion++; } else { contReduccion=0; } fReduccion = (1.0-((double)poblacion[0].genesActivos()/(double)datosTrain.length))*100.0; if (contReduccion >= 10 || contAcierto >= 10){ if (Randomize.Randint(0,1)==0) { if (contAcierto >= 10) { contAcierto = 0; umbralOpt++; } else { contReduccion = 0; umbralOpt--; } } else { if (contReduccion >= 10) { contReduccion = 0; umbralOpt--; } else { contAcierto = 0; umbralOpt++; } } } /*Binary tournament selection*/ comp1 = Randomize.Randint(0,tamPoblacion-1); do { comp2 = Randomize.Randint(0,tamPoblacion-1); } while (comp2 == comp1); if (poblacion[comp1].getFitness() > poblacion[comp2].getFitness()) sel1 = comp1; else sel1 = comp2; comp1 = Randomize.Randint(0,tamPoblacion-1); do { comp2 = Randomize.Randint(0,tamPoblacion-1); } while (comp2 == comp1); if (poblacion[comp1].getFitness() > poblacion[comp2].getFitness()) sel2 = comp1; else sel2 = comp2; hijos = new Cromosoma[2]; hijos[0] = new Cromosoma (kNeigh, poblacion[sel1], poblacion[sel2], pCross,datosTrain.length); hijos[1] = new Cromosoma (kNeigh, poblacion[sel2], poblacion[sel1], pCross,datosTrain.length); hijos[0].mutation (kNeigh, pMut, dMatrix, datosTrain, realTrain, nominalTrain, nulosTrain, distanceEu); hijos[1].mutation (kNeigh, pMut, dMatrix, datosTrain, realTrain, nominalTrain, nulosTrain, distanceEu); /*Evaluation of offsprings*/ hijos[0].evaluacionCompleta(nClases, kNeigh, clasesTrain); hijos[1].evaluacionCompleta(nClases, kNeigh, clasesTrain); ev+=2; GAeffort += 2; temporal = ev; if (hijos[0].getFitness() > poblacion[tamPoblacion-1].getFitness() || Randomize.Rand() < 0.0625) { ev += hijos[0].optimizacionLocal(nClases, kNeigh, clasesTrain,dMatrix,umbralOpt, datosTrain, realTrain, nominalTrain, nulosTrain, distanceEu); } if (hijos[1].getFitness() > poblacion[tamPoblacion-1].getFitness() || Randomize.Rand() < 0.0625) { ev += hijos[1].optimizacionLocal(nClases, kNeigh, clasesTrain,dMatrix,umbralOpt, datosTrain, realTrain, nominalTrain, nulosTrain, distanceEu); } LSeffort += (ev - temporal); /*Replace the two worst*/ if (hijos[0].getFitness() > poblacion[tamPoblacion-1].getFitness()) { poblacion[tamPoblacion-1] = new Cromosoma (kNeigh, datosTrain.length, hijos[0]); } if (hijos[1].getFitness() > poblacion[tamPoblacion-2].getFitness()) { poblacion[tamPoblacion-2] = new Cromosoma (kNeigh, datosTrain.length, hijos[1]); } /* System.out.println(ev + " - (" + umbralOpt + ")" + (double)poblacion[0].getFitnessAc()*100.0/(double)datosTrain.length + " / " + (double)poblacion[tamPoblacion-1].getFitnessAc()*100.0/(double)datosTrain.length + " - " + (1.0-((double)poblacion[0].genesActivos()/(double)datosTrain.length))*100.0 + " / " + (1.0-((double)poblacion[tamPoblacion-1].genesActivos()/(double)datosTrain.length))*100.0);*/ } Arrays.sort(poblacion); nSel = poblacion[0].genesActivos(); /*Construction of S set from the best cromosome*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (i=0, l=0; i<datosTrain.length; i++) { if (poblacion[0].getGen(i)) { //the instance must be copied to the solution for (j=0; j<datosTrain[i].length; j++) { conjS[l][j] = datosTrain[i][j]; conjR[l][j] = realTrain[i][j]; conjN[l][j] = nominalTrain[i][j]; conjM[l][j] = nulosTrain[i][j]; } clasesS[l] = clasesTrain[i]; l++; } } System.out.println("SSMA "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); /** AHORA A�ADO MI DE!! **/ Parameters.assertBasicArgs(ficheroSalida); PrototypeGenerationAlgorithm.readParametersFile(this.Script); PrototypeGenerationAlgorithm.printParameters(); PrototypeSet training = readPrototypeSet(ficheroSalida[0]); //training.print(); // Conjunto devuelto POR SSMA trainingDataSet = readPrototypeSet(this.ficheroTraining); // Conjunto inicial generador = new PrototypeGenerator(trainingDataSet); // trainingDataSet.print(); double initialAcc = classficationAccuracy1NN(training,trainingDataSet); System.out.println("Initial Acc = "+ initialAcc); PrototypeSet LVQ3 = makeLVQ3Reduction(training, trainingDataSet); // LLAMO al LVQ3 PrototypeSet nominalPopulation = new PrototypeSet(); nominalPopulation.formatear(LVQ3); initialAcc = classficationAccuracy1NN(nominalPopulation,trainingDataSet); System.out.println("Final Acc = "+ initialAcc); LVQ3.print(); LVQ3.save(ficheroSalida[0]); // Lo guardo // COn conjS me vale. int trainRealClass[][]; int trainPrediction[][]; trainRealClass = new int[datosTrain.length][1]; trainPrediction = new int[datosTrain.length][1]; //Working on training for ( i=0; i<datosTrain.length; i++) { trainRealClass[i][0] = clasesTrain[i]; trainPrediction[i][0] = KNN.evaluate(datosTrain[i],LVQ3.prototypeSetTodouble(), nClases, LVQ3.getClases(), 1); } KNN.writeOutput(ficheroSalida[0], trainRealClass, trainPrediction, entradas, salida, relation); //Working on test int realClass[][] = new int[datosTest.length][1]; int prediction[][] = new int[datosTest.length][1]; //Check time for (i=0; i<realClass.length; i++) { realClass[i][0] = clasesTest[i]; prediction[i][0]= KNN.evaluate(datosTest[i],LVQ3.prototypeSetTodouble(), nClases,LVQ3.getClases(), 1); } KNN.writeOutput(ficheroSalida[1], realClass, prediction, entradas, salida, relation); } /** * Performs a LVQ3-reduction of the set. * @param w Window width. * @param e Epsilon. * @param iter Number of iterations. * @param Np Number of prototypes to be generated. */ private PrototypeSet makeLVQ3Reduction(PrototypeSet InitialSet, PrototypeSet training) { int size = InitialSet.size(); LVQ3 lvq3 = new LVQ3(InitialSet,training, this.Maxiter, size, this.alpha0, this.windowW, this.epsilon); PrototypeSet reducedByLVQ3 = lvq3.reduceSet(); return reducedByLVQ3; } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the name of training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroValidation = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); //Parameters.assertBasicArgs(ficheroSalida); /*Obtainin the path and the base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the name of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the seed*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); semilla = Long.parseLong(tokens.nextToken().substring(1)); /*Getting the size of the poblation and the number of evaluations*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); tamPoblacion = Integer.parseInt(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); nEval = Double.parseDouble(tokens.nextToken().substring(1)); /*Getting the probabilities of evolutionary operators*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); pCross = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); pMut = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); kNeigh = Integer.parseInt(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.Maxiter = Integer.parseInt(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.alpha0= Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.windowW = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.epsilon = Double.parseDouble(tokens.nextToken().substring(1)); System.out.print("\nIsaac dice: alpha0= "+this.alpha0+ " Maxiter= "+ this.Maxiter+" epsilon= "+this.epsilon+ "\n"); } }