/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzySAP; import keel.Algorithms.Shared.Parsing.*; import keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.*; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.*; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Algorithms.*; import keel.Algorithms.Shared.Exceptions.*; import java.io.*; import org.core.*; /** * <p> * ModelFuzzySAP is intended to generate a Fuzzy Rule Based System * (FRBS) model using an Simulate Annealing Algorithm and Programming (SAP). * * This class makes used of the following classes: * {@link FuzzyGAPModelIndividual}: the individual to be learned * {@link SimulatedAnnealing}: to optimize following the SAP rules. * * Detailed in: * * L. S�nchez, I. Couso, J.A. Corrales. Combining GP Operators With SA Search To * Evolve Fuzzy Rule Based Classifiers. Information Sciences 136:1-4 (2001) * 175-192. * </p> * * <p> * @author Written by Luciano Sanchez (University of Oviedo) 21/07/2005 * @author Modified by J.R. Villar (University of Oviedo) 19/12/2008 * @version 1.0 * @since JDK1.4 * </p> */ public class ModelFuzzySAP { //The Randomize object used in this class static Randomize rand; //The maximum number of Fuzzy Rules to be learned. final static int MAXFUZZYRULES=1000; /** * <p> * This private static method extract the dataset and the method's parameters * from the KEEL environment, carries out with the partitioning of the * input and output spaces, learn the FRBS model --which is a * {@link FuzzyGAPModelIndividual} instance-- using the {@link SimulatedAnnealing} * algorithm and prints out the results with the validation dataset. * * * </p> * @param tty unused boolean parameter, kept for compatibility * @param pc ProcessConfig object to obtain the train and test datasets * and the method's parameters. */ private static void fuzzySAPModelling(boolean tty, ProcessConfig pc) { try { String readALine=new String(); int lOption=0; int defaultNumberInputPartitions=0; int numberOfCrossovers=0; ProcessDataset pd=new ProcessDataset(); readALine=(String)pc.parInputData.get(ProcessConfig.IndexTrain); if (pc.parNewFormat) pd.processModelDataset(readALine,true); else pd.oldClassificationProcess(readALine); int nData=pd.getNdata(); // Number of examples int nVariables=pd.getNvariables(); // Number of variables int nInputs=pd.getNinputs(); // Number of inputs pd.showDatasetStatistics(); double[][] X = pd.getX(); // Input data double[] Y = pd.getY(); // Output data double[] inputMaximum = pd.getImaximum(); // Maximum and minimum input data double[] inputMinimum = pd.getIminimum(); double outputMaximum = pd.getOmaximum(); // Maximos y minimos de los datos de salida double outputMinimum = pd.getOminimum(); int[] nInputPartitions=new int[nInputs]; // Terminos en cada particion linguistica int nOutputPartitions; // Partitions definition FuzzyPartition[] inputPartitions=new FuzzyPartition[nInputs]; for (int i=0;i<nInputs;i++) { nInputPartitions[i]=pc.parPartitionLabelNum; inputPartitions[i]=new FuzzyPartition(inputMinimum[i],inputMaximum[i],nInputPartitions[i]); } nOutputPartitions=pc.parPartitionLabelNum; FuzzyPartition outputPartitions=new FuzzyPartition(outputMinimum,outputMaximum,nOutputPartitions); int defuzzificationType=RuleBase.DEFUZCDM; int localHeight=10; localHeight=pc.parMaxHeigth; // Genetic Algorithm Optimization FuzzyGAPModelIndividual p = new FuzzyGAPModelIndividual(inputPartitions,outputPartitions,localHeight,pc.parFitnessType,rand,defuzzificationType); p.setExamples(X,Y); int nIterations=pc.parIterNumber; int gaMutationID=OperatorIdent.GAPMUTAGA; int gpMutationID=OperatorIdent.GAPMUTAGP; double df; df=pc.parDeltaFit; GeneticAlgorithm AG=new SimulatedAnnealing( p, pc.parCrGAProb, // GA Mutation probability df, // Expected fitness increment for a crossover pc.parP0, // Probability for accepting -deltafit in 0 iteration pc.parP1, // Probability for accepting -deltafit in final iteration pc.parMutAmpl, // Mutation amplite pc.parNSUB, // Number of iterations for each temperature rand, pc.parMutaId2, pc.parMutaId3, pc.parLoIterNumber, pc.parLoId, pc.parLoProb); p=(FuzzyGAPModelIndividual)AG.evolve(nIterations); // Result is printed p.debug(); pc.trainingResults(Y,p.getYo()); System.out.println("RMS train = "+p.fitness()); ProcessDataset pdt = new ProcessDataset(); int nTest,nTestInputs,nTestVariables; readALine=(String)pc.parInputData.get(ProcessConfig.IndexTest); if (pc.parNewFormat) pdt.processModelDataset(readALine,false); else pdt.oldClassificationProcess(readALine); nTest = pdt.getNdata(); nTestVariables = pdt.getNvariables(); nTestInputs = pdt.getNinputs(); pdt.showDatasetStatistics(); if (nTestInputs!=nInputs) throw new IOException("IOERR test file"); double[][] Xp=pdt.getX(); double [] Yp=pdt.getY(); p.setExamples(Xp,Yp); System.out.println(" RMS test = "+p.fitness()); pc.results(Yp,p.getYo()); } catch(FileNotFoundException e) { System.err.println(e+" Input file not found"); } catch(IOException e) { System.err.println(e+" Read error"); } catch(invalidFitness e) { System.err.println(e); } catch(invalidCrossover e) { System.err.println(e); } catch(invalidMutation e) { System.err.println(e); } catch(invalidOptim e) { System.err.println(e); } } /** * <p> * This public static method runs the algorithm that this class concerns with. * </p> * @param args Array of strings to sent parameters to the main program. The * path of the algorithm's parameters file must be given. */ public static void main(String args[]) { boolean tty=false; ProcessConfig pc=new ProcessConfig(); System.out.println("Reading configuration file: "+args[0]); if (pc.fileProcess(args[0])<0) return; int algo=pc.parAlgorithmType; rand=new Randomize(); rand.setSeed(pc.parSeed); ModelFuzzySAP pi=new ModelFuzzySAP(); pi.fuzzySAPModelling(tty,pc); } }