/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.RE_SL_Methods.LEL_TSK;
import java.io.*;
import org.core.*;
import java.util.*;
import java.lang.Math;
class Mam2Tsk {
public double semilla;
public String fich_datos_chequeo, fich_datos_tst, fich_datos_val;
public String fichero_conf, ruta_salida;
public String fichero_br, fichero_reglas, fich_tra_obli, fich_tst_obli;
public String datos_inter = "";
public String cadenaReglas = "";
public MiDataset tabla, tabla_tst, tabla_val;
public BaseR_TSK base_reglas;
public Adap_M2TSK fun_adap;
public Est_evol_M2TSK ee;
public Mam2Tsk(String f_e) {
fichero_conf = f_e;
}
private String Quita_blancos(String cadena) {
StringTokenizer sT = new StringTokenizer(cadena, "\t ", false);
return (sT.nextToken());
}
/* Reads the data of the configuration file */
public void leer_conf() {
int i, j;
String cadenaEntrada, valor;
int gen_ee, Mu, Landa, N_sigma, N_alfa;
int Omega_x, Omega_sigma, Omega_alfa, Delta_x, Delta_sigma, Delta_alfa;
// we read the file in a String
cadenaEntrada = Fichero.leeFichero(fichero_conf);
StringTokenizer sT = new StringTokenizer(cadenaEntrada, "\n\r=", false);
// we read the algorithm's name
sT.nextToken();
sT.nextToken();
// we read the name of the training and test files
sT.nextToken();
valor = sT.nextToken();
StringTokenizer ficheros = new StringTokenizer(valor, "\t ", false);
fich_datos_chequeo = ( (ficheros.nextToken()).replace('\"', ' ')).trim();
fich_datos_val = ( (ficheros.nextToken()).replace('\"', ' ')).trim();
fich_datos_tst = ( (ficheros.nextToken()).replace('\"', ' ')).trim();
// we read the name of the output files
sT.nextToken();
valor = sT.nextToken();
ficheros = new StringTokenizer(valor, "\t ", false);
fich_tra_obli = ( (ficheros.nextToken()).replace('\"', ' ')).trim();
fich_tst_obli = ( (ficheros.nextToken()).replace('\"', ' ')).trim();
fichero_br = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); //BR del anterior
String aux = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); //BD
fichero_reglas = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); //Nueva BR
aux = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); //BR de seleccion
aux = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); //BR de Tuning
ruta_salida = fich_tst_obli.substring(0, fich_tst_obli.lastIndexOf('/') + 1);
// we read the seed of the random generator
sT.nextToken();
valor = sT.nextToken();
semilla = Double.parseDouble(valor.trim());
Randomize.setSeed( (long) semilla);
for (i = 0; i < 8; i++) { //leo los 8 primeros parametros que son del m�todo anterior MOGUL
sT.nextToken(); //nombre parametro
sT.nextToken(); //valor parametro
}
// we read the Evolutionary Strategy iterations
sT.nextToken();
valor = sT.nextToken();
gen_ee = Integer.parseInt(valor.trim());
// we read the Number of Parents for the Evolutionary Strategy (Mu)
sT.nextToken();
valor = sT.nextToken();
Mu = Integer.parseInt(valor.trim());
// we read the Number of offspring for the Evolutionary Strategy (Landa)
sT.nextToken();
valor = sT.nextToken();
Landa = Integer.parseInt(valor.trim());
// we read the Size of the Standar Deviation String (N_sigma)
sT.nextToken();
valor = sT.nextToken();
N_sigma = Integer.parseInt(valor.trim());
// we read the Size of the Angle String (N_alfa)
sT.nextToken();
valor = sT.nextToken();
N_alfa = Integer.parseInt(valor.trim());
// we read the Recombination Operator for the Solution String (Omega_x)
sT.nextToken();
valor = sT.nextToken();
Omega_x = Integer.parseInt(valor.trim());
// we read the Recombination Operator for the Deviation String (Omega_sigma)
sT.nextToken();
valor = sT.nextToken();
Omega_sigma = Integer.parseInt(valor.trim());
// we read the Recombination Operator for the Angle String (Omega_alfa)
sT.nextToken();
valor = sT.nextToken();
Omega_alfa = Integer.parseInt(valor.trim());
// we read the Number of Parents to recombine the Solution String (Delta_x)
sT.nextToken();
valor = sT.nextToken();
Delta_x = Integer.parseInt(valor.trim());
// we read the Number of Parents to recombine the Deviation String (Delta_sigma)
sT.nextToken();
valor = sT.nextToken();
Delta_sigma = Integer.parseInt(valor.trim());
// we read the Number of Parents to recombine the Angle String (Delta_alfa)
sT.nextToken();
valor = sT.nextToken();
Delta_alfa = Integer.parseInt(valor.trim());
// we create all the objects
tabla = new MiDataset(fich_datos_chequeo, false);
if (tabla.salir == false) {
tabla_val = new MiDataset(fich_datos_val, false);
tabla_tst = new MiDataset(fich_datos_tst, false);
base_reglas = new BaseR_TSK(fichero_br, tabla, false);
fun_adap = new Adap_M2TSK(tabla, tabla_tst, base_reglas);
ee = new Est_evol_M2TSK(base_reglas, fun_adap, tabla, gen_ee, Mu, Landa,
N_sigma, N_alfa, Omega_x, Omega_sigma, Omega_alfa,
Delta_x, Delta_sigma, Delta_alfa);
}
}
public void run() {
int i, j, tmp;
double ec_tra, el_tra, ec_tst, el_tst;
/* We read the configutate file and we initialize the structures and variables */
leer_conf();
if (tabla.salir == false) {
for (i = 0; i < base_reglas.n_reglas; i++) {
/* we obtain the positive examples */
fun_adap.ejemplos_positivos(i);
/* we apply the strategy Evolution for learning the consequent */
ee.EE_Mu_Landa();
/* we store the rule in the RB */
base_reglas.inserta_cons(i, ee.solucion(), fun_adap);
}
/* we calcule the MSEs */
fun_adap.Error_tra();
ec_tra = fun_adap.EC;
el_tra = fun_adap.EL;
fun_adap.Error_tst();
ec_tst = fun_adap.EC;
el_tst = fun_adap.EL;
/* we write the RB */
cadenaReglas = base_reglas.BRtoString();
cadenaReglas += "\nECMtra: " + ec_tra + " ELMtra: " + el_tra;
cadenaReglas += "\nECMtst: " + ec_tst + " ELMtst: " + el_tst;
Fichero.escribeFichero(fichero_reglas, cadenaReglas);
/* we write the obligatory output files*/
String salida_tra = tabla.getCabecera();
salida_tra += fun_adap.getSalidaObli(tabla_val);
Fichero.escribeFichero(fich_tra_obli, salida_tra);
String salida_tst = tabla_tst.getCabecera();
salida_tst += fun_adap.getSalidaObli(tabla_tst);
Fichero.escribeFichero(fich_tst_obli, salida_tst);
/* we write the MSEs in specific files */
Fichero.AnadirtoFichero(ruta_salida + "mam2tskcomunR.txt",
"" + base_reglas.n_reglas + "\n");
Fichero.AnadirtoFichero(ruta_salida + "mam2tskcomunTRA.txt",
"" + ec_tra + "\n");
Fichero.AnadirtoFichero(ruta_salida + "mam2tskcomunTST.txt",
"" + ec_tst + "\n");
}
}
}