/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /*********************************************************************** This file is part of the Fuzzy Instance Based Learning package, a Java package implementing Fuzzy Nearest Neighbor Classifiers as complementary material for the paper: Fuzzy Nearest Neighbor Algorithms: Taxonomy, Experimental analysis and Prospects Copyright (C) 2012 J. Derrac (jderrac@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) F. Herrera (herrera@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * * File: CFKNN.java * * The CFKNN algorithm. * * @author Written by Joaqu�n Derrac (University of Granada) 13/11/2011 * @version 1.0 * @since JDK1.5 * */ package keel.Algorithms.Fuzzy_Instance_Based_Learning.CFKNN; import java.text.DecimalFormat; import java.text.DecimalFormatSymbols; import java.util.Arrays; import java.util.StringTokenizer; import org.core.Files; import org.core.Randomize; import keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm; import keel.Algorithms.Fuzzy_Instance_Based_Learning.ReportTool; import keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer; import keel.Algorithms.Fuzzy_Instance_Based_Learning.Util; public class CFKNN extends FuzzyIBLAlgorithm { private int K; private double alpha; private double referenceMembership [][]; private double testMembership [][]; private double membership [][]; private int selected []; /** * Reads the parameters of the algorithm. * * @param script Configuration script * */ @Override protected void readParameters(String script) { String file; String line; StringTokenizer fileLines, tokens; file = Files.readFile (script); fileLines = new StringTokenizer (file,"\n\r"); //Discard in/out files definition fileLines.nextToken(); fileLines.nextToken(); fileLines.nextToken(); //Getting the seed line = fileLines.nextToken(); tokens = new StringTokenizer (line, "="); tokens.nextToken(); seed = Long.parseLong(tokens.nextToken().substring(1)); //Getting the K parameter line = fileLines.nextToken(); tokens = new StringTokenizer (line, "="); tokens.nextToken(); K = Integer.parseInt(tokens.nextToken().substring(1)); //Getting the Alpha parameter line = fileLines.nextToken(); tokens = new StringTokenizer (line, "="); tokens.nextToken(); alpha = Double.parseDouble(tokens.nextToken().substring(1)); } //end-method /** * Main builder. Initializes the methods' structures * * @param script Configuration script */ public CFKNN(String script){ readDataFiles(script); //Naming the algorithm name="CFKNN"; membership=new double[trainData.length][nClasses]; selected=new int[trainData.length]; referenceMembership = new double [referenceData.length][nClasses]; testMembership = new double [testData.length][nClasses]; //Initialization of Reporting tool ReportTool.setOutputFile(outFile[2]); } //end-method private void editTrainingSet(){ int pos; int count; Arrays.fill(selected, 0); //select initial prototypes for (int i=0; i<nClasses; i++) { pos = Randomize.Randint (0, trainOutput.length); count=0; while (trainOutput[pos] != i && count < trainOutput.length) { pos = (pos + 1) % trainOutput.length; count++; } if (count < trainOutput.length) { selected[pos]=1; } } //set a random order for the instances int order [] = new int [trainData.length]; for (int i=0; i<trainData.length; i++) { order[i]=i; } shuffleVector(order); //test the inclusion of instances int index; double minDist[]; int nearestN[]; double dist; boolean stop; double classMembership[]; classMembership=new double[nClasses]; for (int i=0; i<trainData.length; i++) { index=order[i]; Arrays.fill(classMembership, 0.0); if(selected[index]==0){ //find its K nearest neighbors nearestN = new int[K]; minDist = new double[K]; for (int i2=0; i2<K; i2++) { nearestN[i2] = -1; minDist[i2] = Double.MAX_VALUE; } //KNN Method starts here for (int i2=0; i2<trainData.length; i2++) { dist = Util.euclideanDistance(trainData[i2],trainData[index]); if (i2 != index){ //leave-one-out //see if it's nearer than our previous selected neighbors stop=false; for(int j=0;j<K && !stop;j++){ if (dist < minDist[j]) { for (int l = K - 1; l >= j+1; l--) { minDist[l] = minDist[l - 1]; nearestN[l] = nearestN[l - 1]; } minDist[j] = dist; nearestN[j] = i2; stop=true; } } } } //compute its class membership double norm[]; double sum; double MAX_NORM = 100000000; norm = new double [K]; sum = 0.0; for(int n = 0;n<K;n++){ if(nearestN[n]!=-1){ if(minDist[n]==0.0){ norm[n]=MAX_NORM; } norm[n] = 1.0/ Math.pow(minDist[n],(2.0/(2.0-1.0))); norm[n]=Math.min(norm[n],MAX_NORM); sum+=norm[n]; } } for(int n = 0;n<K;n++){ if(nearestN[n]!=-1){ for(int c=0;c<nClasses;c++){ classMembership[c]+= membership[nearestN[n]][c]*(norm[n]/sum); } } } //compute entropy double entropy= 0.0; double term; for(int c=0;c<nClasses;c++){ term=classMembership[c]*(Math.log(classMembership[c]) / Math.log(2)); entropy+=term; } entropy=-entropy; //select instance if(entropy>alpha){ selected[index]=1; } } } } private void shuffleVector(int vector []){ int pos,tmp; for (int i=0; i<vector.length; i++) { pos = Randomize.Randint (0, vector.length); tmp = vector[i]; vector[i] = vector[pos]; vector[pos] = tmp; } } private void assignMemberships(){ double prototypes [][]; double dist; double distances[]; double sum; //compute prototypes prototypes = new double [nClasses][inputAtt]; for(int i=0;i<nClasses;i++){ Arrays.fill(prototypes[i],0.0); } for(int i=0;i<trainData.length;i++){ for(int j=0;j<trainData[0].length;j++){ prototypes[trainOutput[i]][j]+=trainData[i][j]; } } for(int i=0;i<nClasses;i++){ for(int j=0;j<trainData[0].length;j++){ if(nInstances[i]>0){ prototypes[i][j]/=(double)nInstances[i]; } } } distances=new double [nClasses]; for(int i=0;i<trainData.length;i++){ sum=0.0; for(int j=0;j<nClasses;j++){ dist=Util.euclideanDistance(trainData[i], prototypes[j]); dist=1.0/(dist*dist); distances[j]=dist; sum+=dist; } for(int j=0;j<nClasses;j++){ membership[i][j]=distances[j]/sum; } } } /** * Classifies the training set (leave-one-out) */ public void classifyTrain(){ //Start of training time Timer.resetTime(); classifyTrainSet(); //End of training time Timer.setTrainingTime(); //Showing results System.out.println(name+" "+ relation + " Training " + Timer.getTrainingTime() + "s"); } //end-method /** * Classifies the test set */ public void classifyTest(){ //Start of training time Timer.resetTime(); classifyTestSet(); //End of test time Timer.setTestTime(); //Showing results System.out.println(name+" "+ relation + " Test " + Timer.getTestTime() + "s"); } //end-method /** * Classifies the training set */ public void classifyTrainSet(){ for(int i=0;i<trainData.length;i++){ trainPrediction[i]=classifyTrain(i,trainData[i]); } } //end-method /** * Classifies the test set */ public void classifyTestSet(){ for(int i=0;i<testData.length;i++){ testPrediction[i]=classifyTest(i,testData[i]); } } //end-method /** * Evaluates a instance to predict its class membership * * @param index Index of the instance in the test set * @param example Instance evaluated * */ private int classifyTrain(int index, double example[]) { double minDist[]; int nearestN[]; double dist; boolean stop; nearestN = new int[K]; minDist = new double[K]; for (int i=0; i<K; i++) { nearestN[i] = 0; minDist[i] = Double.MAX_VALUE; } //KNN Method starts here for (int i=0; i<trainData.length; i++) { if(selected[i]==1 && index!=i){ dist = Util.euclideanDistance(trainData[i],example); //see if it's nearer than our previous selected neighbors stop=false; for(int j=0;j<K && !stop;j++){ if (dist < minDist[j]) { for (int l = K - 1; l >= j+1; l--) { minDist[l] = minDist[l - 1]; nearestN[l] = nearestN[l - 1]; } minDist[j] = dist; nearestN[j] = i; stop=true; } } } } //compute membership double norm[]; double sum; norm = new double [K]; sum = 0.0; double MAX_NORM = 100000000; for(int i = 0;i<K;i++){ if(minDist[i]==0.0){ norm[i]=MAX_NORM; } norm[i] = 1.0/ Math.pow(minDist[i],(2.0/(2.0-1.0))); norm[i]=Math.min(norm[i],MAX_NORM); sum+=norm[i]; } for(int i = 0;i<K;i++){ for(int c=0;c<nClasses;c++){ referenceMembership [index][c]+= membership[nearestN[i]][c]*(norm[i]/sum); } } return computeClass(referenceMembership [index]); } /** * Evaluates a instance to predict its class membership * * @param index Index of the instance in the test set * @param example Instance evaluated * */ private int classifyTest(int index, double example[]) { double minDist[]; int nearestN[]; double dist; boolean stop; nearestN = new int[K]; minDist = new double[K]; for (int i=0; i<K; i++) { nearestN[i] = 0; minDist[i] = Double.MAX_VALUE; } //KNN Method starts here for (int i=0; i<trainData.length; i++) { if(selected[i]==1){ dist = Util.euclideanDistance(trainData[i],example); //see if it's nearer than our previous selected neighbors stop=false; for(int j=0;j<K && !stop;j++){ if (dist < minDist[j]) { for (int l = K - 1; l >= j+1; l--) { minDist[l] = minDist[l - 1]; nearestN[l] = nearestN[l - 1]; } minDist[j] = dist; nearestN[j] = i; stop=true; } } } } //compute membership double norm[]; double sum; norm = new double [K]; sum = 0.0; double MAX_NORM = 100000000; for(int i = 0;i<K;i++){ if(minDist[i]==0.0){ norm[i]=MAX_NORM; } norm[i] = 1.0/ Math.pow(minDist[i],(2.0/(2.0-1.0))); norm[i]=Math.min(norm[i],MAX_NORM); sum+=norm[i]; } for(int i = 0;i<K;i++){ for(int c=0;c<nClasses;c++){ testMembership [index][c]+= membership[nearestN[i]][c]*(norm[i]/sum); } } return computeClass(testMembership [index]); } /** * Computes the class of a instance given its membership array * @param pertenence Membership array * * @return Class assigned (crisp) */ private int computeClass(double pertenence[]){ double max = Double.MIN_VALUE; int output=-1; for(int i=0; i< pertenence.length;i++){ if(max<pertenence[i]){ max=pertenence[i]; output=i; } } return output; } //end-method /** * Generates the model of the algorithm */ public void generateModel(){ //Start of model time Timer.resetTime(); assignMemberships(); editTrainingSet(); //End of model time Timer.setModelTime(); //Showing results System.out.println(name+" "+ relation + " Model " + Timer.getModelTime() + "s"); } /** * Reports the results obtained */ public void printReport(){ writeOutput(outFile[0], trainOutput, trainPrediction); writeOutput(outFile[1], testOutput, testPrediction); ReportTool.setResults(trainOutput,trainPrediction,testOutput,testPrediction,nClasses); ReportTool.printReport(); } //end-method } //end-class