/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Neural_Networks.NNEP_Regr.neuralnet; import keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.AbstractNeuralNet; import keel.Algorithms.Neural_Networks.NNEP_Regr.problem.regression.IRegressor; /** * <p> * @author Written by Pedro Antonio Gutierrez Penia (University of Cordoba) 16/7/2007 * @author Written by Aaron Ruiz Mora (University of Cordoba) 16/7/2007 * @version 0.1 * @since JDK1.5 * </p> */ public class NeuralNetRegressor extends AbstractNeuralNet implements IRegressor { /** * <p> * Neural net used as a regressor * </p> */ ///////////////////////////////////////////////////////////////// // -------------------------------------------------- Constructor ///////////////////////////////////////////////////////////////// /** * <p> * Empty constructor * </p> */ public NeuralNetRegressor() { super(); } ///////////////////////////////////////////////////////////////// // ---------------------------- Implementing IRegressor interface ///////////////////////////////////////////////////////////////// /** * <p> * Estimates output value of a observation, through * its inputs values * </p> * @param inputs Double array with all inputs of the observation * * @return double Output of the regressor for these inputs */ public double operate(double []inputs){ return outputLayer.getNeuron(0).operate(inputs); } /** * <p> * Estimates output values of a set of observations, through * their inputs values * </p> * @param inputs Double matrix with all inputs of all observations * * @return double[] Output values of the regressor for all * observation inputs */ public double[] operate(double [][]inputs){ return outputLayer.getNeuron(0).operate(inputs); } }