/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // GCNN.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 18-6-2007. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Preprocess.Instance_Selection.GCNN; import keel.Algorithms.Preprocess.Basic.*; import org.core.*; import java.util.StringTokenizer; import java.util.Arrays; public class GCNN extends Metodo { /*Own parameters of the algorithm*/ private double P; public GCNN (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int S[]; int i, j, l; int nClases; int pos, min; int baraje[]; int tmp; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; int tamS; int busq; boolean continuar; boolean porAnadir[]; double deltaN; double dist; double minDistP, minDistN, minDist; int votes[]; long tiempo = System.currentTimeMillis(); porAnadir = new boolean[datosTrain.length]; Arrays.fill(porAnadir,false); deltaN= Double.POSITIVE_INFINITY; for (i=0; i<datosTrain.length; i++) { for (j=i+1; j<datosTrain.length; j++) { if (clasesTrain[i] != clasesTrain[j]) { dist = KNN.distancia(datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu); if (dist < deltaN) deltaN = dist; } } } /*Inicialization of the candidates set*/ S = new int[datosTrain.length]; for (i=0; i<S.length; i++) S[i] = Integer.MAX_VALUE; /*Getting the number of different classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; tamS = 0; if (nClases < 2) { System.err.println("Input dataset contains only one class"); nClases = 0; } /*Inserting an element of each class, that with more votes casted by its neighbours of the same class*/ votes = new int[datosTrain.length]; Arrays.fill(votes, 0); for (i=0; i<datosTrain.length; i++) { minDist = Double.POSITIVE_INFINITY; pos = -1; for (j=0; j<datosTrain.length; j++) { if (clasesTrain[i] == clasesTrain[j] && i != j) { dist = KNN.distancia(datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu); if (dist < minDist) { minDist = dist; pos = j; } } } if (pos >= 0) votes[pos]++; } for (i=0; i<nClases; i++) { min = pos = -1; for (j=0; j<votes.length; j++) { if (clasesTrain[j] == i && votes[j] > min) { min = votes[j]; pos = j; } } if (pos >= 0) { S[tamS] = pos; tamS++; } } do { /*Inserting an element of each class of the unabsorbed samples, that with more votes casted by its neighbours of the same class*/ Arrays.fill(votes, 0); for (i=0; i<datosTrain.length; i++) { if (porAnadir[i]) { minDist = Double.POSITIVE_INFINITY; pos = -1; for (j=0; j<datosTrain.length; j++) { if (i != j && porAnadir[j] && clasesTrain[i] == clasesTrain[j]) { dist = KNN.distancia(datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu); if (dist < minDist) { minDist = dist; pos = j; } } if (pos >= 0) votes[pos]++; } } else { votes[i] = -1; } } for (i=0; i<nClases; i++) { min = pos = -1; for (j=0; j<votes.length; j++) { if (porAnadir[j] && clasesTrain[j] == i && votes[j] > min) { min = votes[j]; pos = j; } } if (pos >= 0) { S[tamS] = pos; tamS++; } } Arrays.fill(porAnadir, false); continuar = false; baraje = new int[datosTrain.length]; for (i=0; i<datosTrain.length; i++) baraje[i] = i; for (i=0; i<datosTrain.length; i++) { pos = Randomize.Randint (i, clasesTrain.length-1); tmp = baraje[i]; baraje[i] = baraje[pos]; baraje[pos] = tmp; } for (i=0; i<datosTrain.length; i++) { /*Construction of the S set from the previous vector S*/ conjS = new double[tamS][datosTrain[0].length]; conjR = new double[tamS][datosTrain[0].length]; conjN = new int[tamS][datosTrain[0].length]; conjM = new boolean[tamS][datosTrain[0].length]; clasesS = new int[tamS]; for (j = 0; j < tamS; j++) { for (l = 0; l < datosTrain[0].length; l++) { conjS[j][l] = datosTrain[S[j]][l]; conjR[j][l] = realTrain[S[j]][l]; conjN[j][l] = nominalTrain[S[j]][l]; conjM[j][l] = nulosTrain[S[j]][l]; } clasesS[j] = clasesTrain[S[j]]; } Arrays.sort(S); busq = Arrays.binarySearch(S, baraje[i]); if (busq < 0) { //this instance is not actually included in S minDistP = minDistN = Double.POSITIVE_INFINITY; for (j=0; j<datosTrain.length; j++) { if (baraje[i] != j) { dist = KNN.distancia(datosTrain[baraje[i]], realTrain[baraje[i]], nominalTrain[baraje[i]], nulosTrain[baraje[i]], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu); if (clasesTrain[baraje[i]] == clasesTrain[j]) { if (dist < minDistP) { minDistP = dist; } } else { if (dist < minDistN) { minDistN = dist; } } } } if ((minDistN - minDistP) <= P*deltaN) { continuar = true; porAnadir[baraje[i]] = true; } } } } while (continuar == true); /*Construction of the S set from the previous vector S*/ conjS = new double[tamS][datosTrain[0].length]; conjR = new double[tamS][datosTrain[0].length]; conjN = new int[tamS][datosTrain[0].length]; conjM = new boolean[tamS][datosTrain[0].length]; clasesS = new int[tamS]; for (j=0; j<tamS; j++) { for (l=0; l<datosTrain[0].length; l++) { conjS[j][l] = datosTrain[S[j]][l]; conjR[j][l] = realTrain[S[j]][l]; conjN[j][l] = nominalTrain[S[j]][l]; conjM[j][l] = nulosTrain[S[j]][l]; } clasesS[j] = clasesTrain[S[j]]; } System.out.println("GCNN "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the weight P*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); P = Double.parseDouble(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; } }