/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // NCNEdit.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 26-4-2008. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Preprocess.Instance_Selection.NCNEdit; import keel.Algorithms.Preprocess.Basic.*; import org.core.*; import java.util.StringTokenizer; import java.util.Arrays; public class NCNEdit extends Metodo { /*Own parameters of the algorithm*/ private int k; public NCNEdit (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int i, j, l, m; int nClases; int claseObt; boolean marcas[]; int nSel = 0; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; int nvecinos[]; double centroide[], centroideT[]; double dist, minDist; int pos; int votos[], votada, votaciones; long tiempo = System.currentTimeMillis(); /*Inicialization of the flagged instances vector for a posterior copy*/ marcas = new boolean[datosTrain.length]; for (i=0; i<datosTrain.length; i++) marcas[i] = false; /*Getting the number of differents classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; /*Body of the algorithm. For each instance in T, search the correspond class agreeing its majority from the nearest centroid neighborhood. Is it is positive, the instance is selected.*/ nvecinos = new int[k]; centroide = new double[datosTrain[0].length]; centroideT = new double[datosTrain[0].length]; votos = new int[nClases]; for (i=0; i<datosTrain.length; i++) { /*Apply K-NCN to the instance*/ for (j=0; j<k; j++) { Arrays.fill(centroide, 0.0); for (l=0; l<j; l++) { for (m=0; m<datosTrain[0].length; m++) { if (nvecinos[l] >= 0) centroide[m] += datosTrain[nvecinos[l]][m]; } } pos = -1; minDist = Double.POSITIVE_INFINITY; for (l=0; l<datosTrain.length; l++) { if (i!=l) { for (m=0; m<centroide.length; m++) { centroideT[m] = centroide[m] + datosTrain[l][m]; } for (m=0; m<centroide.length; m++) { centroideT[m] /= (double)(j+1); } dist = KNN.distancia(datosTrain[i], centroideT); if (dist < minDist) { minDist = dist; pos = l; } } } nvecinos[j] = pos; } /*Obtain the voted class*/ for (j=0; j<nClases; j++) { votos[j] = 0; } for (j=0; j<k; j++) { if (nvecinos[j] >= 0) votos[clasesTrain[nvecinos[j]]] ++; } votada = 0; votaciones = votos[0]; for (j=1; j<nClases; j++) { if (votaciones < votos[j]) { votaciones = votos[j]; votada = j; } } claseObt = votada; if (claseObt == clasesTrain[i]) { //agree with your majority, it is included in the solution set marcas[i] = true; nSel++; } } /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (i=0, l=0; i<datosTrain.length; i++) { if (marcas[i]) { //the instance will be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[i][j]; conjR[l][j] = realTrain[i][j]; conjN[l][j] = nominalTrain[i][j]; conjM[l][j] = nulosTrain[i][j]; } clasesS[l] = clasesTrain[i]; l++; } } System.out.println("NCNEdit "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the number of neighbors*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); k = Integer.parseInt(tokens.nextToken().substring(1)); } }