/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. Sánchez (luciano@uniovi.es)
J. Alcalá-Fdez (jalcala@decsai.ugr.es)
S. García (sglopez@ujaen.es)
A. Fernández (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.ImbalancedClassification.Ensembles.C45;
import java.io.*;
import keel.Dataset.Attributes;
import keel.Dataset.InstanceSet;
/** para commons.configuration
import org.apache.commons.configuration.*;
*/
/**
* Class to implement the C4.5 algorithm
@author Crist�bal Romero Morales (UCO)
@version 1.0 (30-03-06)
*/
public class C45
extends Algorithm {
/** Decision tree. */
private Tree root;
/** Is the tree pruned or not. */
private boolean prune = true;
/** Confidence level. */
private float confidence = 0.25f;
/** Minimum number of itemsets per leaf. */
private int minItemsets = 2;
/** The prior probabilities of the classes. */
private double[] priorsProbabilities;
/** Resolution of the margin histogram. */
private static int marginResolution = 500;
/** Cumulative margin classification. */
private double marginCounts[];
/** The sum of counts for priors. */
private double classPriorsSum;
/** Constructor.
*
* @param paramFile The parameters file.
*
* @throws Exception If the algorithm cannot be executed.
*/
public C45(String paramFile) throws Exception {
try {
// starts the time
long startTime = System.currentTimeMillis();
/* Sets the options of the execution from text file*/
StreamTokenizer tokenizer = new StreamTokenizer(new BufferedReader(new
FileReader(paramFile)));
initTokenizer(tokenizer);
setOptions(tokenizer);
/* Sets the options from XML file */
/** para commons.configuration
XMLConfiguration config = new XMLConfiguration(paramFile);
setOptions( config );
*/
/* Initializes the dataset. */
modelDataset = new Dataset(modelFileName, true);
trainDataset = new Dataset(trainFileName, false);
testDataset = new Dataset(testFileName, false);
priorsProbabilities = new double[modelDataset.numClasses()];
priorsProbabilities();
marginCounts = new double[marginResolution + 1];
// generate the tree
generateTree(modelDataset);
printTrain();
printTest();
printResult();
}
catch (Exception e) {
System.err.println(e.getMessage());
System.exit( -1);
}
}
/** Constructor.
*
* @param fichTrain The input training file.
* @param pruned indicates if the tree is going to be pruned or not
* @param confidence confidence
* @param instancesPerLeaf minimun number of instances per leaf
*
* @throws Exception If the algorithm cannot be executed.
*/
public C45(String fichTrain, boolean pruned, float confidence,
int instancesPerLeaf, double[] weights) {
// Attributes.clearAll();
modelDataset = new Dataset(fichTrain, false, weights);
priorsProbabilities = new double[modelDataset.numClasses()];
try {
priorsProbabilities();
}
catch (Exception e) {
System.err.println(e.getMessage());
System.exit( -1);
}
marginCounts = new double[marginResolution + 1];
this.prune = pruned;
this.confidence = confidence;
this.minItemsets = instancesPerLeaf;
}
/** Constructor.
*
* @param IS The input training file.
* @param pruned indicates if the tree is going to be pruned or not
* @param confidence confidence
* @param instancesPerLeaf minimun number of instances per leaf
*
* @throws Exception If the algorithm cannot be executed.
*/
public C45(InstanceSet IS, boolean pruned, float confidence,
int instancesPerLeaf, double[] weights) {
// Attributes.clearAll();
modelDataset = new Dataset(IS, weights);
//modelDataset = new Dataset(fichTrain, false, weights);
priorsProbabilities = new double[modelDataset.numClasses()];
try {
priorsProbabilities();
}
catch (Exception e) {
System.err.println(e.getMessage());
System.exit( -1);
}
marginCounts = new double[marginResolution + 1];
this.prune = pruned;
this.confidence = confidence;
this.minItemsets = instancesPerLeaf;
}
public void generateTree() throws Exception{
try{
generateTree(modelDataset);
}catch (Exception e) {
System.err.println(e.getMessage());
System.exit( -1);
}
}
/** Function to read the options from the execution file and assign the values to the parameters.
*
* @param options The StreamTokenizer that reads the parameters file.
*
* @throws Exception If the format of the file is not correct.
*/
protected void setOptions(StreamTokenizer options) throws Exception {
options.nextToken();
/* Checks that the file starts with the token algorithm */
if (options.sval.equalsIgnoreCase("algorithm")) {
options.nextToken();
options.nextToken();
//if (!options.sval.equalsIgnoreCase( "C4.5" ) )
// throw new Exception( "The name of the algorithm is not correct." );
options.nextToken();
options.nextToken();
options.nextToken();
options.nextToken();
/* Reads the names of the input files*/
if (options.sval.equalsIgnoreCase("inputData")) {
options.nextToken();
options.nextToken();
modelFileName = options.sval;
if (options.nextToken() != StreamTokenizer.TT_EOL) {
trainFileName = options.sval;
options.nextToken();
testFileName = options.sval;
if (options.nextToken() != StreamTokenizer.TT_EOL) {
trainFileName = modelFileName;
options.nextToken();
}
}
}
else {
throw new Exception("No file test provided.");
}
/* Reads the names of the output files*/
while (true) {
if (options.nextToken() == StreamTokenizer.TT_EOF) {
throw new Exception("No output file provided.");
}
if (options.sval == null) {
continue;
}
else if (options.sval.equalsIgnoreCase("outputData")) {
break;
}
}
options.nextToken();
options.nextToken();
trainOutputFileName = options.sval;
options.nextToken();
testOutputFileName = options.sval;
options.nextToken();
resultFileName = options.sval;
if (!getNextToken(options)) {
return;
}
while (options.ttype != StreamTokenizer.TT_EOF) {
/* Reads the prune parameter */
if (options.sval.equalsIgnoreCase("pruned")) {
options.nextToken();
options.nextToken();
if (options.sval.equalsIgnoreCase("TRUE")) {
prune = true;
}
else {
//prune = false;
prune = true;
}
}
/* Reads the confidence parameter */
if (options.sval.equalsIgnoreCase("confidence")) {
if (!prune) {
throw new Exception(
"Doesn't make sense to change confidence for prune "
+ "tree!");
}
options.nextToken();
options.nextToken();
/* Checks that the confidence threshold is between 0 and 1. */
float cf = Float.parseFloat(options.sval);
if (cf <= 1 || cf >= 0) {
confidence = Float.parseFloat(options.sval);
}
}
/* Reads the itemsets per leaf parameter */
if (options.sval.equalsIgnoreCase("itemsetsPerLeaf")) {
options.nextToken();
options.nextToken();
if (Integer.parseInt(options.sval) > 0) {
minItemsets = Integer.parseInt(options.sval);
}
}
getNextToken(options);
}
}
}
/** Generates the tree.
*
* @param itemsets The dataset used to build the tree.
*
* @throws Exception If the tree cannot be built.
*/
public void generateTree(Dataset itemsets) throws Exception {
SelectCut selectCut;
selectCut = new SelectCut(minItemsets, itemsets);
root = new Tree(selectCut, prune, confidence);
root.buildTree(itemsets);
}
/** Function to evaluate the class which the itemset must have according to the classification of the tree.
*
* @param itemset The itemset to evaluate.
*
* @return The index of the class index predicted.
*/
public double evaluateItemset(Itemset itemset) throws Exception {
Itemset classMissing = (Itemset) itemset.copy();
double prediction = 0;
classMissing.setDataset(itemset.getDataset());
classMissing.setClassMissing();
double[] classification = classificationForItemset(classMissing);
prediction = maxIndex(classification);
updateStats(classification, itemset, itemset.numClasses());
//itemset.setPredictedValue( prediction );
return prediction;
}
/** Updates all the statistics for the current itemset.
*
* @param predictedClassification Distribution of class values predicted for the itemset.
* @param itemset The itemset.
* @param nClasses The number of classes.
*
*/
private void updateStats(double[] predictedClassification, Itemset itemset,
int nClasses) {
int actualClass = (int) itemset.getClassValue();
if (!itemset.classIsMissing()) {
updateMargins(predictedClassification, actualClass, nClasses);
// Determine the predicted class (doesn't detect multiple classifications)
int predictedClass = -1;
double bestProb = 0.0;
for (int i = 0; i < nClasses; i++) {
if (predictedClassification[i] > bestProb) {
predictedClass = i;
bestProb = predictedClassification[i];
}
}
// Update counts when no class was predicted
if (predictedClass < 0) {
return;
}
double predictedProb = Math.max(Double.MIN_VALUE,
predictedClassification[actualClass]);
double priorProb = Math.max(Double.MIN_VALUE,
priorsProbabilities[actualClass] /
classPriorsSum);
}
}
/** Returns class probabilities for an itemset.
*
* @param itemset The itemset.
*
* @throws Exception If cannot compute the classification.
*/
public final double[] classificationForItemset(Itemset itemset) throws
Exception {
return root.classificationForItemset(itemset);
}
/** Update the cumulative record of classification margins.
*
* @param predictedClassification Distribution of class values predicted for the itemset.
* @param actualClass The class value.
* @param nClasses Number of classes.
*/
private void updateMargins(double[] predictedClassification,
int actualClass, int nClasses) {
double probActual = predictedClassification[actualClass];
double probNext = 0;
for (int i = 0; i < nClasses; i++) {
if ( (i != actualClass) && ( //Comparators.isGreater( predictedClassification[i], probNext ) ) )
predictedClassification[i] > probNext)) {
probNext = predictedClassification[i];
}
}
double margin = probActual - probNext;
int bin = (int) ( (margin + 1.0) / 2.0 * marginResolution);
marginCounts[bin]++;
}
/** Evaluates if a string is a boolean value.
*
* @param value The string to evaluate.
*
* @return True if value is a boolean value. False otherwise.
*/
private boolean isBoolean(String value) {
if (value.equalsIgnoreCase("TRUE") || value.equalsIgnoreCase("FALSE")) {
return true;
}
else {
return false;
}
}
/** Returns index of maximum element in a given array of doubles. First maximum is returned.
*
* @param doubles The array of elements.
*
*/
public static int maxIndex(double[] doubles) {
double maximum = 0;
int maxIndex = 0;
for (int i = 0; i < doubles.length; i++) {
if ( (i == 0) || //
doubles[i] > maximum) {
maxIndex = i;
maximum = doubles[i];
}
}
return maxIndex;
}
/** Sets the class prior probabilities.
*
* @throws Exception If cannot compute the probabilities.
*/
public void priorsProbabilities() throws Exception {
for (int i = 0; i < modelDataset.numClasses(); i++) {
priorsProbabilities[i] = 0;// 1;
}
classPriorsSum = 0;//modelDataset.numClasses();
for (int i = 0; i < modelDataset.numItemsets(); i++) {
if (!modelDataset.itemset(i).classIsMissing()) {
try {
priorsProbabilities[ (int) modelDataset.itemset(i).
getClassValue()] += modelDataset.itemset(i).
getWeight();
classPriorsSum += modelDataset.itemset(i).getWeight();
// System.out.println(modelDataset.itemset(i).
// getWeight());
}
catch (Exception e) {
System.err.println(e.getMessage());
}
}
}
}
public String printString(){
String tree = new String("");
toString();
tree += "@TotalNumberOfNodes " + root.NumberOfNodes;
tree += "\n@NumberOfLeafs " + root.NumberOfLeafs;
tree += "\n"+toString();
root.NumberOfLeafs = 0;
root.NumberOfNodes = 0;
return tree;
}
/** Writes the tree and the results of the training and the test in the file.
*
* @exception If the file cannot be written.
*/
public void printResult() throws IOException {
long totalTime = (System.currentTimeMillis() - startTime) / 1000;
long seconds = totalTime % 60;
long minutes = ( (totalTime - seconds) % 3600) / 60;
String tree = "";
PrintWriter resultPrint;
tree += toString();
tree += "\n@TotalNumberOfNodes " + root.NumberOfNodes;
tree += "\n@NumberOfLeafs " + root.NumberOfLeafs;
tree += "\n\n@NumberOfItemsetsTraining " + trainDataset.numItemsets();
tree += "\n@NumberOfCorrectlyClassifiedTraining " + correct;
tree += "\n@PercentageOfCorrectlyClassifiedTraining " +
(float) (correct * 100.0) / (float) trainDataset.numItemsets() +
"%";
tree += "\n@NumberOfInCorrectlyClassifiedTraining " +
(trainDataset.numItemsets() - correct);
tree += "\n@PercentageOfInCorrectlyClassifiedTraining " +
(float) ( (trainDataset.numItemsets() - correct) * 100.0) /
(float) trainDataset.numItemsets() + "%";
tree += "\n\n@NumberOfItemsetsTest " + testDataset.numItemsets();
tree += "\n@NumberOfCorrectlyClassifiedTest " + testCorrect;
tree += "\n@PercentageOfCorrectlyClassifiedTest " +
(float) (testCorrect * 100.0) / (float) testDataset.numItemsets() +
"%";
tree += "\n@NumberOfInCorrectlyClassifiedTest " +
(testDataset.numItemsets() - testCorrect);
tree += "\n@PercentageOfInCorrectlyClassifiedTest " +
(float) ( (testDataset.numItemsets() - testCorrect) * 100.0) /
(float) testDataset.numItemsets() + "%";
tree += "\n\n@ElapsedTime " +
(totalTime - minutes * 60 - seconds) / 3600 + ":" +
minutes / 60 + ":" + seconds;
resultPrint = new PrintWriter(new FileWriter(resultFileName));
resultPrint.print(getHeader() + "\n@decisiontree\n\n" + tree);
resultPrint.close();
}
/** Evaluates the training dataset and writes the results in the file.
*
* @exception If the file cannot be written.
*/
public void printTrain() {
String text = getHeader();
for (int i = 0; i < trainDataset.numItemsets(); i++) {
try {
Itemset itemset = trainDataset.itemset(i);
int cl = (int) evaluateItemset(itemset);
if (cl == (int) itemset.getValue(trainDataset.getClassIndex())) {
correct++;
}
text += trainDataset.getClassAttribute().value( ( (int) itemset.
getClassValue())) + " " + trainDataset.getClassAttribute().value(cl)
+ "\n";
}
catch (Exception e) {
System.err.println(e.getMessage());
}
}
try {
PrintWriter print = new PrintWriter(new FileWriter(
trainOutputFileName));
print.print(text);
print.close();
}
catch (IOException e) {
System.err.println("Can not open the training output file: " +
e.getMessage());
}
}
/** Evaluates the test dataset and writes the results in the file.
*
* @exception If the file cannot be written.
*/
public void printTest() {
String text = getHeader();
for (int i = 0; i < testDataset.numItemsets(); i++) {
try {
int cl = (int) evaluateItemset(testDataset.itemset(i));
Itemset itemset = testDataset.itemset(i);
if (cl == (int) itemset.getValue(testDataset.getClassIndex())) {
testCorrect++;
}
text += testDataset.getClassAttribute().value( ( (int) itemset.
getClassValue())) + " " + testDataset.getClassAttribute().value(cl)
+ "\n";
}
catch (Exception e) {
System.err.println(e.getMessage());
}
}
try {
PrintWriter print = new PrintWriter(new FileWriter(
testOutputFileName));
print.print(text);
print.close();
}
catch (IOException e) {
System.err.println("Can not open the training output file.");
}
}
/** Function to print the tree.
*
*/
public String toString() {
return root.toString();
}
/** Main function.
*
* @param args The parameters file.
*
* @throws Exception If the algorithm cannot been executed properly.
*/
public static void main(String[] args) {
try {
if (args.length != 1) {
throw new Exception("\nError: you have to specify the parameters file\n\tusage: java -jar C45.java parameterfile.txt");
}
else {
C45 classifier = new C45(args[0]);
}
}
catch (Exception e) {
System.err.println(e.getMessage());
System.exit( -1);
}
}
public double[] getPriorProbabilities()
{
return this.priorsProbabilities;
}
}