/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL; /** * <p> * @author Written by Jesus Alcala Fernandez (University of Granada) 01/01/2004 * @author Modified by Francisco Jos� Berlanga (University of Ja�n) 09/12/2008 * @version 1.0 * @since JDK 1.6 * </p> */ class DataBase { /** * <p> * It encodes the Data Base * </p> */ public FuzzySet [][]BaseDatos; public int n_variables; public int [] n_etiquetas; public T_Interval [] extremos; public T_Interval [][]intervalos; /** * <p> * Constructor * </p> * @param MaxEtiquetas int The maximum number of label per variable * @param n_var int The number of input variables */ public DataBase (int MaxEtiquetas, int n_var) { int i, j; n_variables = n_var; intervalos = new T_Interval [n_variables][MaxEtiquetas]; BaseDatos = new FuzzySet[n_variables][MaxEtiquetas]; for (i=0; i < n_variables; i++) { BaseDatos[i] = new FuzzySet[MaxEtiquetas]; intervalos[i] = new T_Interval [MaxEtiquetas]; for (j=0; j < MaxEtiquetas; j++) { BaseDatos[i][j] = new FuzzySet(); intervalos[i][j] = new T_Interval(); } } n_etiquetas = new int[n_variables]; extremos = new T_Interval[n_variables]; for (i=0; i<n_variables; i++) extremos[i] = new T_Interval(); } /** * <p> * Rounds the generated value for the semantics * </p> * @param val double The value to be rounded * @param tope double The maximum and minimum values allowed */ public double Assign (double val, double tope) { if ((val > -1E-4) && (val < 1E-4)) return (0); if ((val > tope-1E-4) && (val < tope+1E-4)) return (tope); return (val); } /** * <p> * Generates the semantics of the linguistic variables with triangular fuzzy sets and the mutation intervals to mutate * </p> */ public void Semantic () { int var, etq; double marca, valor; double [] punto = new double[3]; double [] punto_medio = new double[2]; /* we generate the fuzzy partitions of the variables */ for (var=0; var<n_variables; var++) { marca = (extremos[var].max-extremos[var].min) / ((double)n_etiquetas[var]-1); for (etq=0; etq<n_etiquetas[var]; etq++) { valor = extremos[var].min+marca*(etq-1); BaseDatos[var][etq].x0 = Assign (valor,extremos[var].max); valor = extremos[var].min + marca * etq; BaseDatos[var][etq].x1 = Assign (valor,extremos[var].max); BaseDatos[var][etq].x2 = BaseDatos[var][etq].x1; valor = extremos[var].min + marca * (etq + 1); BaseDatos[var][etq].x3 = Assign (valor,extremos[var].max); BaseDatos[var][etq].y = 1; BaseDatos[var][etq].Nombre = "V" + (var+1); BaseDatos[var][etq].Etiqueta = "L" + (etq+1); } } /* we generate the mutation intervals for each gene */ for (var=0; var < n_variables; var++) { for (etq=0; etq < n_etiquetas[var]; etq++) { punto[0] = BaseDatos[var][etq].x0; punto[1] = BaseDatos[var][etq].x1; punto[2] = BaseDatos[var][etq].x3; punto_medio[0] = (punto[1] - punto[0]) / 2.0; punto_medio[1] = (punto[2] - punto[1]) / 2.0; intervalos[var][etq].min = punto[0] - punto_medio[0]; intervalos[var][etq].max = punto[2] + punto_medio[1]; } } } }