/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierMOGUL;
/**
* <p>
* @author Written by Jesus Alcala Fernandez (University of Granada) 01/01/2004
* @author Modified by Francisco Jos� Berlanga (University of Ja�n) 09/12/2008
* @version 1.0
* @since JDK 1.6
* </p>
*/
class DataBase {
/**
* <p>
* It encodes the Data Base
* </p>
*/
public FuzzySet [][]BaseDatos;
public int n_variables;
public int [] n_etiquetas;
public T_Interval [] extremos;
public T_Interval [][]intervalos;
/**
* <p>
* Constructor
* </p>
* @param MaxEtiquetas int The maximum number of label per variable
* @param n_var int The number of input variables
*/
public DataBase (int MaxEtiquetas, int n_var) {
int i, j;
n_variables = n_var;
intervalos = new T_Interval [n_variables][MaxEtiquetas];
BaseDatos = new FuzzySet[n_variables][MaxEtiquetas];
for (i=0; i < n_variables; i++) {
BaseDatos[i] = new FuzzySet[MaxEtiquetas];
intervalos[i] = new T_Interval [MaxEtiquetas];
for (j=0; j < MaxEtiquetas; j++) {
BaseDatos[i][j] = new FuzzySet();
intervalos[i][j] = new T_Interval();
}
}
n_etiquetas = new int[n_variables];
extremos = new T_Interval[n_variables];
for (i=0; i<n_variables; i++) extremos[i] = new T_Interval();
}
/**
* <p>
* Rounds the generated value for the semantics
* </p>
* @param val double The value to be rounded
* @param tope double The maximum and minimum values allowed
*/
public double Assign (double val, double tope) {
if ((val > -1E-4) && (val < 1E-4)) return (0);
if ((val > tope-1E-4) && (val < tope+1E-4)) return (tope);
return (val);
}
/**
* <p>
* Generates the semantics of the linguistic variables with triangular fuzzy sets and the mutation intervals to mutate
* </p>
*/
public void Semantic () {
int var, etq;
double marca, valor;
double [] punto = new double[3];
double [] punto_medio = new double[2];
/* we generate the fuzzy partitions of the variables */
for (var=0; var<n_variables; var++) {
marca = (extremos[var].max-extremos[var].min) / ((double)n_etiquetas[var]-1);
for (etq=0; etq<n_etiquetas[var]; etq++) {
valor = extremos[var].min+marca*(etq-1);
BaseDatos[var][etq].x0 = Assign (valor,extremos[var].max);
valor = extremos[var].min + marca * etq;
BaseDatos[var][etq].x1 = Assign (valor,extremos[var].max);
BaseDatos[var][etq].x2 = BaseDatos[var][etq].x1;
valor = extremos[var].min + marca * (etq + 1);
BaseDatos[var][etq].x3 = Assign (valor,extremos[var].max);
BaseDatos[var][etq].y = 1;
BaseDatos[var][etq].Nombre = "V" + (var+1);
BaseDatos[var][etq].Etiqueta = "L" + (etq+1);
}
}
/* we generate the mutation intervals for each gene */
for (var=0; var < n_variables; var++) {
for (etq=0; etq < n_etiquetas[var]; etq++) {
punto[0] = BaseDatos[var][etq].x0;
punto[1] = BaseDatos[var][etq].x1;
punto[2] = BaseDatos[var][etq].x3;
punto_medio[0] = (punto[1] - punto[0]) / 2.0;
punto_medio[1] = (punto[2] - punto[1]) / 2.0;
intervalos[var][etq].min = punto[0] - punto_medio[0];
intervalos[var][etq].max = punto[2] + punto_medio[1];
}
}
}
}