/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /* * To change this template, choose Tools | Templates * and open the template in the editor. */ package keel.Algorithms.Instance_Generation.BasicMethods; import keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm; import keel.Algorithms.Instance_Generation.Basic.PrototypeSet; import keel.Algorithms.Instance_Generation.*; import keel.Algorithms.Instance_Generation.utilities.*; import keel.Algorithms.Instance_Generation.LVQ.*; import keel.Algorithms.Instance_Generation.utilities.KNN.*; import java.util.*; /** * * @author diegoj */ public class SAVG extends AVG { private double percentSelection = 0.2; /** * Creates a new SAVG object. * @param traDataSet Training data set. * @param ps Percent of the initial set selected. */ public SAVG(PrototypeSet traDataSet, double ps) { super(traDataSet); algorithmName="SAVG"; percentSelection = ps; if(ps>1.0) percentSelection = ps/100.0; } /** * Creates a new SAVG object. * @param traDataSet Training data set. * @param param Parameters of the method. */ public SAVG(PrototypeSet traDataSet, Parameters param) { super(traDataSet,param); algorithmName="SAVG"; if(param.existMore()) percentSelection = param.getNextAsDouble(); if(percentSelection > 1.0) percentSelection /= 100.0; } /** * Reduce the set. * @return Reduce the set by SAVG method. */ @Override public PrototypeSet reduceSet() { int size = (int)Math.ceil(trainingDataSet.size() * percentSelection); ARS ars = new ARS(trainingDataSet, size); PrototypeSet reduced = ars.reduceSet(); AVG avg = new AVG(reduced); return avg.reduceSet(); } /** * General main for all the prototoype generators * Arguments: * 0: Filename with the training data set to be condensed. * 1: Filename wich will contain the test data set * @param args Arguments of the main function. */ public static void main(String[] args) { Parameters.setUse("SAVG", "<seed> [% initial selection]"); Parameters.assertBasicArgs(args); PrototypeSet training = PrototypeGenerationAlgorithm.readPrototypeSet(args[0]); PrototypeSet test = PrototypeGenerationAlgorithm.readPrototypeSet(args[1]); double ps = 0.1; long seed = Parameters.assertExtendedArgAsInt(args,2,"seed",0,Long.MAX_VALUE); SAVG.setSeed(seed); if(args.length == 4) { ps = Parameters.assertExtendedArgAsDouble(args,3,"% of prototypes selected", 0, 100); ps /= 100.0; } SAVG generator = new SAVG(training,ps); PrototypeSet resultingSet = generator.execute(); int accuracy1NN = KNN.classficationAccuracy(resultingSet, test); generator.showResultsOfAccuracy(Parameters.getFileName(), accuracy1NN, test); } }