/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /*********************************************************************** This file is part of the Fuzzy Instance Based Learning package, a Java package implementing Fuzzy Nearest Neighbor Classifiers as complementary material for the paper: Fuzzy Nearest Neighbor Algorithms: Taxonomy, Experimental analysis and Prospects Copyright (C) 2012 J. Derrac (jderrac@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) F. Herrera (herrera@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * * File: IFV_NP.java * * The IFV_NP algorithm. * * @author Written by Joaqu�n Derrac (University of Granada) 13/11/2011 * @version 1.0 * @since JDK1.5 * */ package keel.Algorithms.Fuzzy_Instance_Based_Learning.IFV_NP; import java.text.DecimalFormat; import java.text.DecimalFormatSymbols; import java.util.Arrays; import java.util.StringTokenizer; import org.core.Files; import keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm; import keel.Algorithms.Fuzzy_Instance_Based_Learning.ReportTool; import keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer; import keel.Algorithms.Fuzzy_Instance_Based_Learning.Util; public class IFV_NP extends FuzzyIBLAlgorithm { private int K; private double meanInstances [][]; private double prototypes [][]; private double membership []; private double nonmembership []; private double correlationMatrix [][]; private double stDevMatrix[][]; private double threshold; private final int MAX_ITERATIONS = 100; private int iterations; /** * Reads the parameters of the algorithm. * * @param script Configuration script * */ @Override protected void readParameters(String script) { String file; String line; StringTokenizer fileLines, tokens; file = Files.readFile (script); fileLines = new StringTokenizer (file,"\n\r"); //Discard in/out files definition fileLines.nextToken(); fileLines.nextToken(); fileLines.nextToken(); //Getting the threshold line = fileLines.nextToken(); tokens = new StringTokenizer (line, "="); tokens.nextToken(); threshold = Double.parseDouble(tokens.nextToken().substring(1)); } //end-method /** * Main builder. Initializes the methods' structures * * @param script Configuration script */ public IFV_NP(String script){ readDataFiles(script); //Naming the algorithm name="IFV_NP"; //Initialization of Reporting tool ReportTool.setOutputFile(outFile[2]); } //end-method /** * Generates the model of the algorithm */ public void generateModel (){ //Start of model time Timer.resetTime(); computeMeanInstances(); computeCorrelations(); computeStDev(); iterations=0; //End of model time Timer.setModelTime(); //Showing results System.out.println(name+" "+ relation + " Model " + Timer.getModelTime() + "s"); } private void computeStDev(){ double means[][]; double quad[][]; int count[][]; stDevMatrix=new double [nClasses][inputAtt]; means=new double [nClasses][inputAtt]; quad=new double [nClasses][inputAtt]; count=new int [nClasses][inputAtt]; for(int i=0;i<nClasses;i++){ Arrays.fill(means[i], 0.0); Arrays.fill(quad[i], 0.0); Arrays.fill(count[i], 0); } for(int i=0;i<trainData.length;i++){ for(int j=0;j<inputAtt;j++){ means[trainOutput[i]][j]+=trainData[i][j]; quad[trainOutput[i]][j]+=trainData[i][j]*trainData[i][j]; count[trainOutput[i]][j]++; } } for(int i=0;i<nClasses;i++){ if(nInstances[i]<0){ Arrays.fill(stDevMatrix[i], 0.0); } else{ for(int j=0;j<inputAtt;j++){ means[i][j]/=(double)count[i][j]; stDevMatrix[i][j]=(quad[i][j]/(double)count[i][j])-(means[i][j]*means[i][j]); stDevMatrix[i][j]=Math.sqrt(stDevMatrix[i][j]); } } } } private void computeCorrelations(){ double mean [] = new double [inputAtt]; double numerator,denominator,denominator1,denominator2; Arrays.fill(mean, 0.0); for(int i=0;i<trainData.length;i++){ for(int j=0;j<inputAtt;j++){ mean[j]+=trainData[i][j]; } } for(int j=0;j<inputAtt;j++){ mean[j]/=(double)trainData.length; } correlationMatrix= new double [inputAtt][inputAtt]; for(int i=0;i<inputAtt;i++){ correlationMatrix[i][i]=1.0; for(int j=i+1;j<inputAtt;j++){ numerator=0.0; denominator1=0.0; denominator2=0.0; for(int instance=0;instance<trainData.length;instance++){ numerator+= (trainData[instance][i]-mean[i])*(trainData[instance][j]-mean[j]); denominator1+= (trainData[instance][i]-mean[i])*(trainData[instance][i]-mean[i]); denominator2+= (trainData[instance][j]-mean[j])*(trainData[instance][j]-mean[j]); } denominator=Math.sqrt(denominator1*denominator2); correlationMatrix[i][j]=numerator/denominator; correlationMatrix[j][i]=correlationMatrix[i][j]; } } } private void computeMeanInstances(){ meanInstances = new double [nClasses][inputAtt]; for(int i=0;i<nClasses;i++){ Arrays.fill(meanInstances[i],0.0); } for(int i=0;i<trainData.length;i++){ for(int j=0;j<trainData[0].length;j++){ meanInstances[trainOutput[i]][j]+=trainData[i][j]; } } for(int i=0;i<nClasses;i++){ for(int j=0;j<trainData[0].length;j++){ if(nInstances[i]>0){ meanInstances[i][j]/=(double)nInstances[i]; } else{ //very far meanInstances[i][j]=-100000; } } } } /** * Classifies the training set (leave-one-out) */ public void classifyTrain(){ //Start of training time Timer.resetTime(); classifyTrainSet(); //End of training time Timer.setTrainingTime(); //Showing results System.out.println(name+" "+ relation + " Training " + Timer.getTrainingTime() + "s"); } //end-method /** * Classifies the test set */ public void classifyTest(){ //Start of training time Timer.resetTime(); classifyTestSet(); //End of test time Timer.setTestTime(); //Showing results System.out.println(name+" "+ relation + " Test " + Timer.getTestTime() + "s"); } //end-method /** * Classifies the training set */ public void classifyTrainSet(){ for(int i=0;i<trainData.length;i++){ trainPrediction[i]=classifyTrainInstance(i,trainData[i]); } } //end-method /** * Classifies the test set */ public void classifyTestSet(){ for(int i=0;i<testData.length;i++){ testPrediction[i]=classifyTestInstance(i,testData[i]); } } //end-method /** * Classifies an instance of the training set * * @param index Index of the instance in the test set * @param example Instance evaluated * @return class computed */ private int classifyTrainInstance(int index, double example[]) { int result; double aux; int auxI; double distances []; int classes[]; int nearest; double maxMembership; distances = new double [nClasses]; classes = new int [nClasses]; for(int i=0;i<nClasses;i++){ distances[i]=Util.euclideanDistance(example, meanInstances[i]); classes[i]=i; } //sort distances for(int i=0;i<nClasses;i++){ for(int j=i;j<nClasses;j++){ if(distances[i]>distances[j]){ aux=distances[i]; distances[i]=distances[j]; distances[j]=aux; auxI=classes[i]; classes[i]=classes[j]; classes[j]=auxI; } } } membership=new double [nClasses]; nonmembership=new double [nClasses]; membership[classes[0]]=Math.exp(-1.0*distances[0]); nonmembership[classes[0]]=Math.exp(-1.0*distances[1]); for(int i=1;i<distances.length;i++){ membership[classes[i]]=Math.exp(-1.0*distances[i]); nonmembership[classes[i]]=Math.exp(-1.0*distances[i-1]); } //equalize & identify the nearest class maxMembership=membership[0]; nearest=0; for(int i=1;i<nClasses;i++){ nonmembership[i]=Math.min(nonmembership[i],(1.0-membership[i])); if(maxMembership<membership[i]){ maxMembership=membership[i]; nearest=i; } } //proper neighbor found if(maxMembership> threshold){ return nearest; } //moving procedure iterations=0; while(iterations<MAX_ITERATIONS){ iterations++; //generate prototypes if(iterations==1){ prototypes = new double [nClasses][inputAtt]; for(int i=0;i<nClasses;i++){ System.arraycopy(example, 0, prototypes[i], 0, prototypes[i].length); } }else{ for(int i=0;i<nClasses;i++){ if(i!=nearest){ System.arraycopy(prototypes[nearest], 0, prototypes[i], 0, prototypes[i].length); } } } double xOld,xNew; double alpha,rjk; double tangent,lij; int nearestAtt; double minDistAtt; for(int i=0;i<nClasses;i++){ //find nearestAtt nearestAtt=0; minDistAtt=Math.abs(prototypes[i][0]-meanInstances[i][0]); for(int j=1;j<inputAtt;j++){ aux=Math.abs(prototypes[i][j]-meanInstances[i][j]); if(minDistAtt>aux){ minDistAtt=aux; nearestAtt=j; } } for(int j=0;j<inputAtt;j++){ xOld=prototypes[i][j]; rjk=correlationMatrix[j][nearestAtt]; alpha= 1.0/(1.0+Math.exp(-1.0*rjk)); lij=(meanInstances[i][j]-prototypes[i][j])/stDevMatrix[i][j]; tangent= Math.exp(lij)-Math.exp(-1.0*lij); tangent/= Math.exp(lij)+Math.exp(-1.0*lij); xNew=xOld+(alpha*tangent*xOld); prototypes[i][j]=xNew; } } //evaluate new prototypes distances = new double [nClasses]; classes = new int [nClasses]; for(int i=0;i<nClasses;i++){ distances[i]=Util.euclideanDistance(example, prototypes[i]); classes[i]=i; } //sort distances for(int i=0;i<nClasses;i++){ for(int j=i;j<nClasses;j++){ if(distances[i]>distances[j]){ aux=distances[i]; distances[i]=distances[j]; distances[j]=aux; auxI=classes[i]; classes[i]=classes[j]; classes[j]=auxI; } } } membership=new double [nClasses]; nonmembership=new double [nClasses]; membership[classes[0]]=Math.exp(-1.0*distances[0]); nonmembership[classes[0]]=Math.exp(-1.0*distances[1]); for(int i=1;i<distances.length;i++){ membership[classes[i]]=Math.exp(-1.0*distances[i]); nonmembership[classes[i]]=Math.exp(-1.0*distances[i-1]); } maxMembership=membership[0]; nearest=0; nonmembership[0]=Math.min(nonmembership[0],(1.0-membership[0])); for(int i=1;i<nClasses;i++){ nonmembership[i]=Math.min(nonmembership[i],(1.0-membership[i])); if(maxMembership<membership[i]){ maxMembership=membership[i]; nearest=i; } } //proper neighbor found if(maxMembership> threshold){ return nearest; } } return nearest; } //end-method /** * Classifies an instance of the test set * * @param index Index of the instance in the test set * @param example Instance evaluated * @return class computed */ private int classifyTestInstance(int index, double example[]) { int result; double aux; int auxI; double distances []; int classes[]; int nearest; double maxMembership; distances = new double [nClasses]; classes = new int [nClasses]; for(int i=0;i<nClasses;i++){ distances[i]=Util.euclideanDistance(example, meanInstances[i]); classes[i]=i; } //sort distances for(int i=0;i<nClasses;i++){ for(int j=i;j<nClasses;j++){ if(distances[i]>distances[j]){ aux=distances[i]; distances[i]=distances[j]; distances[j]=aux; auxI=classes[i]; classes[i]=classes[j]; classes[j]=auxI; } } } membership=new double [nClasses]; nonmembership=new double [nClasses]; membership[classes[0]]=Math.exp(-1.0*distances[0]); nonmembership[classes[0]]=Math.exp(-1.0*distances[1]); for(int i=1;i<distances.length;i++){ membership[classes[i]]=Math.exp(-1.0*distances[i]); nonmembership[classes[i]]=Math.exp(-1.0*distances[i-1]); } //equalize & identify the nearest class nonmembership[0]=Math.min(nonmembership[0],(1.0-membership[0])); maxMembership=membership[0]; nearest=0; for(int i=1;i<nClasses;i++){ nonmembership[i]=Math.min(nonmembership[i],(1.0-membership[i])); if(maxMembership<membership[i]){ maxMembership=membership[i]; nearest=i; } } //proper neighbor found if(maxMembership> threshold){ return nearest; } //moving procedure iterations=0; while(iterations<MAX_ITERATIONS){ iterations++; //generate prototypes if(iterations==1){ prototypes = new double [nClasses][inputAtt]; for(int i=0;i<nClasses;i++){ System.arraycopy(example, 0, prototypes[i], 0, prototypes[i].length); } }else{ for(int i=0;i<nClasses;i++){ if(i!=nearest){ System.arraycopy(prototypes[nearest], 0, prototypes[i], 0, prototypes[i].length); } } } double xOld,xNew; double alpha,rjk; double tangent,lij; int nearestAtt; double minDistAtt; for(int i=0;i<nClasses;i++){ //find nearestAtt nearestAtt=0; minDistAtt=Math.abs(prototypes[i][0]-meanInstances[i][0]); for(int j=1;j<inputAtt;j++){ aux=Math.abs(prototypes[i][j]-meanInstances[i][j]); if(minDistAtt>aux){ minDistAtt=aux; nearestAtt=j; } } for(int j=0;j<inputAtt;j++){ xOld=prototypes[i][j]; rjk=correlationMatrix[j][nearestAtt]; alpha= 1.0/(1.0+Math.exp(-1.0*rjk)); lij=(meanInstances[i][j]-prototypes[i][j])/stDevMatrix[i][j]; tangent= Math.exp(lij)-Math.exp(-1.0*lij); tangent/= Math.exp(lij)+Math.exp(-1.0*lij); xNew=xOld+(alpha*tangent*xOld); prototypes[i][j]=xNew; } } //evaluate new prototypes distances = new double [nClasses]; classes = new int [nClasses]; for(int i=0;i<nClasses;i++){ distances[i]=Util.euclideanDistance(example, prototypes[i]); classes[i]=i; } //sort distances for(int i=0;i<nClasses;i++){ for(int j=i;j<nClasses;j++){ if(distances[i]>distances[j]){ aux=distances[i]; distances[i]=distances[j]; distances[j]=aux; auxI=classes[i]; classes[i]=classes[j]; classes[j]=auxI; } } } membership=new double [nClasses]; nonmembership=new double [nClasses]; membership[classes[0]]=Math.exp(-1.0*distances[0]); nonmembership[classes[0]]=Math.exp(-1.0*distances[1]); for(int i=1;i<distances.length;i++){ membership[classes[i]]=Math.exp(-1.0*distances[i]); nonmembership[classes[i]]=Math.exp(-1.0*distances[i-1]); } nonmembership[0]=Math.min(nonmembership[0],(1.0-membership[0])); maxMembership=membership[0]; nearest=0; for(int i=1;i<nClasses;i++){ nonmembership[i]=Math.min(nonmembership[i],(1.0-membership[i])); if(maxMembership<membership[i]){ maxMembership=membership[i]; nearest=i; } } //proper neighbor found if(maxMembership> threshold){ return nearest; } } return nearest; } //end-method /** * Reports the results obtained */ public void printReport(){ writeOutput(outFile[0], trainOutput, trainPrediction); writeOutput(outFile[1], testOutput, testPrediction); ReportTool.setResults(trainOutput,trainPrediction,testOutput,testPrediction,nClasses); ReportTool.printReport(); } //end-method } //end-class