/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.RE_SL_Postprocess.MamLocalTunRules; import java.io.*; import org.core.*; import java.util.*; import java.lang.Math; class AG { public double prob_cruce, prob_mutacion, a, b; public int Mu_next, Trials; public double Best_current_perf; public int Best_guy; public int long_poblacion, n_genes, n_reglas; public int [] sample; public int last; public Structure [] Old; public Structure [] New; public Structure [] C; public Structure [] temp; public TipoIntervalo [] intervalos; public Adap fun_adap; public AG (int n_poblacion, double cruce, double mutacion, double valor_a, double valor_b, Adap funcion) { int i; long_poblacion = n_poblacion; prob_cruce = cruce; prob_mutacion = mutacion; a = valor_a; b = valor_b; fun_adap = funcion; sample = new int[long_poblacion]; } /** Reads the RB of a input file */ private void leer_BR (String fichero, int n_variables){ int i; String cadena; cadena = Fichero.leeFichero(fichero); StringTokenizer sT = new StringTokenizer(cadena, "\n\r\t ", false); sT.nextToken(); sT.nextToken(); sT.nextToken(); n_reglas = Integer.parseInt(sT.nextToken()); n_genes = 3 * n_variables * n_reglas; Old = new Structure[long_poblacion]; New = new Structure[long_poblacion]; for (i=0; i<long_poblacion; i++) { Old[i] = new Structure(n_genes); New[i] = new Structure(n_genes); } for (i=0; i<n_genes; i++) New[0].Gene[i] = Double.parseDouble(sT.nextToken()); New[0].n_e = 1; } public void Intercambio () { temp = Old; Old = New; New = temp; } /** Inicialization of the population */ public void Initialize (String fichero, int n_variables) { int i, j; leer_BR(fichero, n_variables); prob_mutacion = prob_mutacion / (double) n_genes; C = new Structure[4]; for (i=0; i<4; i++) C[i] = new Structure(n_genes); intervalos = new TipoIntervalo[n_genes]; for (i=0; i<n_genes; i++) intervalos[i] = new TipoIntervalo(); /* we generate the variation intervals for each gene */ for (i=0; i<n_genes; i+=3) { intervalos[i].min = New[0].Gene[i]-(New[0].Gene[i+1]-New[0].Gene[i])/2.0; intervalos[i].max = New[0].Gene[i]+(New[0].Gene[i+1]-New[0].Gene[i])/2.0; intervalos[i+1].min = New[0].Gene[i+1]-(New[0].Gene[i+1]-New[0].Gene[i])/2.0; intervalos[i+1].max = New[0].Gene[i+1]+(New[0].Gene[i+2]-New[0].Gene[i+1])/2.0; intervalos[i+2].min = New[0].Gene[i+2]-(New[0].Gene[i+2]-New[0].Gene[i+1])/2.0; intervalos[i+2].max = New[0].Gene[i+2]+(New[0].Gene[i+2]-New[0].Gene[i+1])/2.0; } /* the remainder of the population is randomly generated out of a the intervals */ for (i=1; i<long_poblacion; i++) { for (j=0;j<n_genes;j++) New[i].Gene[j] = intervalos[j].min+(intervalos[j].max-intervalos[j].min)*Randomize.Rand(); New[i].n_e=1; } } /* Selection based on the Baker's Estocastic Universal Sampling */ void Select() { double expected, factor, perf, ptr, sum, rank_max, rank_min; int i, j, k, best, temp; rank_min = 0.75; /* we assign the ranking to each element: The best: ranking = long_poblacion-1 The worse: ranking = 0 */ for (i=0; i<long_poblacion; i++) Old[i].n_e = 0; /* we look for the best ordered non element */ for (i=0; i<long_poblacion-1; i++) { best = -1; perf = 0.0; for (j=0; j<long_poblacion; j++) { if ((Old[j].n_e==0) && (best==-1 || Old[j].Perf < perf)) { perf = Old[j].Perf; best = j; } } /* we assign the ranking */ Old[best].n_e = long_poblacion - 1 - i; } /* we normalize the ranking */ rank_max = 2.0 - rank_min; factor = (rank_max-rank_min)/(double)(long_poblacion-1); /* we assign the number of replicas of each chormosome according to the select probability */ k = 0; ptr = Randomize.Rand (); for (sum = i = 0; i<long_poblacion; i++) { expected = rank_min + Old[i].n_e * factor; for (sum += expected; sum>=ptr; ptr++) sample[k++] = i; } /* we complete the population if necessary */ if (k != long_poblacion) { for (;k<long_poblacion; k++) sample[k] = Randomize.RandintClosed (0, long_poblacion-1); } /* we shuffle the selected chromosomes */ for (i=0; i<long_poblacion; i++) { j = Randomize.RandintClosed (i, long_poblacion-1); temp = sample[j]; sample[j] = sample[i]; sample[i] = temp; } /* we create the new population */ for (i=0; i<long_poblacion; i++) { k = sample[i]; for (j=0; j<n_genes; j++) New[i].Gene[j] = Old[k].Gene[j]; New[i].Perf = Old[k].Perf; New[i].n_e = 0; } } private double T_producto_logico (double x ,double y) { if (x<y) return (x); else return (y); } private double S_suma_logica (double x ,double y) { if (x>y) return (x); else return (y); } private double Promedio1 (double x, double y, double p) { return (p*x + (1-p)*y); } /** Max-Min-Aritmetical Crossover */ public void Max_Min_Crossover () { int mom, dad, i, j, temp; int [] indice = new int[4]; double temp1, temp2; for (mom=0; mom<last; mom+=2) { dad = mom + 1; for (i=0; i<n_genes; i++) { temp1 = New[mom].Gene[i]; temp2 = New[dad].Gene[i]; /* we obtain 4 offsprings: appling the t-norma, the t-conorma and 2 the average function */ C[0].Gene[i] = T_producto_logico (temp1, temp2); C[1].Gene[i] = S_suma_logica (temp1, temp2); C[2].Gene[i] = Promedio1 (temp1, temp2, a); C[3].Gene[i] = Promedio1 (temp1, temp2, 1.0 - a); } /* Evaluation of the 4 offsprings */ C[0].Perf = fun_adap.eval (C[0].Gene); C[1].Perf = fun_adap.eval (C[1].Gene); C[2].Perf = fun_adap.eval (C[2].Gene); C[3].Perf = fun_adap.eval (C[3].Gene); /* we order the offsprings by means of the bubble method */ for (i=0; i<4; i++) indice[i]=i; for (i=0; i<4; i++) for (j=0; j<3-i; j++) if (C[indice[j+1]].Perf < C[indice[j]].Perf) { temp = indice[j]; indice[j] = indice[j+1]; indice[j+1] = temp; } for (i=0; i<n_genes; i++) { New[mom].Gene[i] = C[indice[0]].Gene[i]; New[dad].Gene[i] = C[indice[1]].Gene[i]; } /* we update the fitness of the offsprings */ New[mom].Perf = C[indice[0]].Perf; New[dad].Perf = C[indice[1]].Perf; New[mom].n_e = 0; New[dad].n_e = 0; Trials += 2; } } private double delta (long t, double y, long n_generaciones) { double r, potencia, subtotal, sub; r = Randomize.Rand(); sub = 1.0 - (double)t / (double)n_generaciones; potencia = Math.pow (sub, (double)b); subtotal = Math.pow (r, potencia); return (y * (1.0 - subtotal)); } /** Mutation Non Uniform */ public void Mutacion_No_Uniforme (long Gen, long n_generaciones) { int posiciones, i, j; double nval, m; posiciones = n_genes * long_poblacion; if (prob_mutacion>0) { while (Mu_next<posiciones) { /* we determinate the chromosome and the gene */ i = Mu_next / n_genes; j = Mu_next % n_genes; /* we mutate the gene */ if (Randomize.Rand()<0.5) nval = New[i].Gene[j] + delta (Gen, intervalos[j].max-New[i].Gene[j], n_generaciones); else nval=New[i].Gene[j] - delta (Gen, New[i].Gene[j]-intervalos[j].min, n_generaciones); New[i].Gene[j]=nval; New[i].n_e = 1; /* we calculate the next position */ if (prob_mutacion<1) { m = Randomize.Rand(); Mu_next+= (int) (Math.log(m)/Math.log(1.0-prob_mutacion)); Mu_next++; } else Mu_next+=1; } Mu_next -= posiciones; } } /** Fitness Function */ void Evaluate() { double performance; int i, j; for (i=0; i<long_poblacion; i++) { /* if the chromosome aren't evaluated, it's evaluate */ if (New[i].n_e == 1) { New[i].Perf = fun_adap.eval (New[i].Gene); performance = New[i].Perf; New[i].n_e = 0; Trials++; /* we increment the number of evaluated chromosomes */ } else performance = New[i].Perf; /* we calculate the position of the best individual */ if (i == 0) { Best_current_perf = performance; Best_guy = 0; } else if (performance < Best_current_perf) { Best_current_perf = performance; Best_guy = i; } } } /* Elitist selection */ void Elitist () { int i, k, found; /* if the best individual of the old population aren't in the new population, we remplace the last individual for this */ for (i=0, found=0; i<long_poblacion && (found==0); i++) for (k=0, found=1; (k<n_genes) && (found==1); k++) if (New[i].Gene[k] != Old[Best_guy].Gene[k]) found = 0; if (found == 0) { for (k=0; k<n_genes; k++) New[long_poblacion-1].Gene[k] = Old[Best_guy].Gene[k]; New[long_poblacion-1].Perf = Old[Best_guy].Perf; New[long_poblacion-1].n_e = 0; } } /** Returns the best solution*/ public double [] solucion () { return (New[Best_guy].Gene); } /** Returns the fitness of the best solution */ public double solucion_ec () { return (New[Best_guy].Perf); } }