/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Discretizers.Random_Discretizer; import java.util.*; import keel.Algorithms.Discretizers.Basic.*; import keel.Algorithms.Genetic_Rule_Learning.Globals.*; /** * * This class implements the Random Discretizer * */ public class RandomDiscretizer extends Discretizer { protected Vector discretizeAttribute(int attribute,int []values,int begin,int end) { Vector cd=classDistribution(attribute,values,begin,end); if(cd.size()==1) return new Vector(); Vector candidateCutPoints = getCandidateCutPoints(attribute,values,begin,end); if(candidateCutPoints.size()==0) return new Vector(); int numCP=Rand.getInteger(1,candidateCutPoints.size()); Vector cutPoints=new Vector(); for(int i=0;i<numCP;i++) { int pos=Rand.getInteger(0,candidateCutPoints.size()-1); int val=((Integer)candidateCutPoints.elementAt(pos)).intValue(); candidateCutPoints.removeElementAt(pos); double cutPoint=(realValues[attribute][values[val-1]]+realValues[attribute][values[val]])/2.0; boolean endLoop=false; int insertPos=-1; for(int j=0;j<cutPoints.size() && !endLoop;j++) { if(cutPoint<((Double)cutPoints.elementAt(j)).doubleValue()) { endLoop=true; insertPos=j; } } if(endLoop) { cutPoints.insertElementAt(new Double(cutPoint),insertPos); } else { cutPoints.addElement(new Double(cutPoint)); } } return cutPoints; } Vector getCandidateCutPoints(int attribute,int []values,int begin,int end) { Vector cutPoints = new Vector(); double valueAnt=realValues[attribute][values[begin]]; for(int i=begin;i<=end;i++) { double val=realValues[attribute][values[i]]; if(val!=valueAnt) cutPoints.addElement(new Integer(i)); valueAnt=val; } return cutPoints; } Vector classDistribution(int attribute,int []values,int begin,int end) { int []classCount = new int[Parameters.numClasses]; for(int i=0;i<Parameters.numClasses;i++) classCount[i]=0; for(int i=begin;i<=end;i++) classCount[classOfInstances[values[i]]]++; Vector res= new Vector(); for(int i=0;i<Parameters.numClasses;i++) { if(classCount[i]>0) res.addElement(new Integer(classCount[i])); } return res; } }