/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Decision_Trees.Target; /** * <p>Title: Algorithm</p> * * <p>Description: It contains the implementation of the algorithm</p> * * * <p>Company: KEEL </p> * * @author Alberto Fern�ndez * @version 1.0 */ import java.io.IOException; import org.core.*; public class Target { myDataset train, val, test; String outputTr, outputTst, ficheroTree, claseMayoritaria; int nClasses, nGenerations; int nCross,nMut,nClone,nImmigration,nTrees; String fichTrain; double pSplit; Tree mejorArbol; private boolean somethingWrong = false; //to check if everything is correct. /** * Default constructor */ public Target() { } /** * It reads the data from the input files (training, validation and test) and parse all the parameters * from the parameters array. * @param parameters parseParameters It contains the input files, output files and parameters */ public Target(parseParameters parameters) { train = new myDataset(); val = new myDataset(); test = new myDataset(); fichTrain = parameters.getTrainingInputFile(); try { System.out.println("\nReading the training set: " + parameters.getTrainingInputFile()); train.readClassificationSet(parameters.getTrainingInputFile(), true); System.out.println("\nReading the validation set: " + parameters.getValidationInputFile()); val.readClassificationSet(parameters.getValidationInputFile(), false); System.out.println("\nReading the test set: " + parameters.getTestInputFile()); test.readClassificationSet(parameters.getTestInputFile(), false); } catch (IOException e) { System.err.println( "There was a problem while reading the input data-sets: " + e); somethingWrong = true; } //We may check if there are some numerical attributes, because our algorithm may not handle them: //somethingWrong = somethingWrong || train.hasRealAttributes(); somethingWrong = somethingWrong || train.hasMissingAttributes(); outputTr = parameters.getTrainingOutputFile(); outputTst = parameters.getTestOutputFile(); ficheroTree = parameters.getOutputFile(0); //Now we parse the parameters long semilla = Long.parseLong(parameters.getParameter(0)); pSplit = Double.parseDouble(parameters.getParameter(1)); nGenerations = Integer.parseInt(parameters.getParameter(2)); nCross = Integer.parseInt(parameters.getParameter(3)); /*while (nCross % 2 != 0) { nCross++; }*/ nMut = Integer.parseInt(parameters.getParameter(4)); /*while (nMut % 2 != 0) { nMut++; }*/ nClone = Integer.parseInt(parameters.getParameter(5)); /*while (nClone % 2 != 0) { nClone++; }*/ nImmigration = Integer.parseInt(parameters.getParameter(6)); /*while (nImmigration % 2 != 0) { nImmigration++; }*/ nTrees = nCross+nMut+nClone+nImmigration; Randomize.setSeed(semilla); } /** * It launches the algorithm */ public void execute() { if (somethingWrong) { //We do not execute the program System.err.println("An error was found, either the data-set have numerical values or missing values."); System.err.println("Aborting the program"); //We should not use the statement: System.exit(-1); } else { //We do here the algorithm's operations nClasses = train.getnClasses(); Poblacion p = new Poblacion(train,pSplit,nGenerations,nCross,nMut,nClone,nImmigration); p.hacerGenetico(); mejorArbol = p.mejorSolucion(); //Finally we should fill the training and test output files double accTr = doOutput(this.val, this.outputTr); double accTst = doOutput(this.test, this.outputTst); Fichero.escribeFichero(ficheroTree,mejorArbol.printString()); System.out.println("Tree obtained: "+mejorArbol.printString()); System.out.println("Accuracy in training: " + accTr); System.out.println("Accuracy in test: " + accTst); System.out.println("Algorithm Finished"); } } /** * It generates the output file from a given dataset and stores it in a file * @param dataset myDataset input dataset * @param filename String the name of the file * @return the Accuracy of the classifier */ private double doOutput(myDataset dataset, String filename) { String output = new String(""); output = dataset.copyHeader(); //we insert the header in the output file int aciertos = 0; //We write the output for each example for (int i = 0; i < dataset.getnData(); i++) { //for classification: String claseReal = dataset.getOutputAsString(i); String prediccion = this.classificationOutput(dataset.getExample(i)); output += claseReal + " " + prediccion + "\n"; if (claseReal.equalsIgnoreCase(prediccion)) { aciertos++; } } Fichero.escribeFichero(filename, output); return (1.0 * aciertos / dataset.size()); } /** * It returns the algorithm classification output given an input example * @param example double[] The input example * @return String the output generated by the algorithm */ private String classificationOutput(double[] example) { return mejorArbol.clasificar(example); //return train.claseMasFrecuente(); } }