/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Luciano S�nchez (University of Oviedo) 20/01/2004 * @author Modified by M.R. Su�rez (University of Oviedo) 18/12/2008 * @author Modified by Enrique A. de la Cal (University of Oviedo) 21/12/2008 * @version 1.0 * @since JDK1.5 * </p> */ package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.*; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.*; import keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.*; // Wrappers used with genetic algorithms public class FuzzyModel extends Model { /** * <p> * Class for management of fuzzy models * </p> */ RuleBase R; int defuzType; /** * <p> * Constructor. Generate a new rule base * </p> * @param a The fuzzy partition * @param b The fuzzy partition * @param c * @param d * @param td Type of defuzzifier */ public FuzzyModel(FuzzyPartition[] a, FuzzyPartition b, int c, int d, int td) { R=new RuleBase(a,b,c,d); defuzType=td; } /** * <p> * Construxtor. Generate a new rule base besed in another fuzzy model * </p> * @param m The fuzzy model */ public FuzzyModel(FuzzyModel m) { R=m.R.clone(); defuzType=m.defuzType; } /** * <p> * This method asign a fuzzy mothed to another one * </p> * @param m The fuzzy model */ public void set(FuzzyModel m) { R=m.R.clone(); defuzType=m.defuzType; } /** * <p> * This method defuzzified the output and return a value * </p> * @param x The output * @return the output defuzzified */ public double output(double [] x) { return R.defuzzify(R.output(x),defuzType); } /** * <p> * This method is for debug * </p> */ public void debug() { R.debug(); } /** * <p> * This method clone a fuzzy model * </p> * @return The fuzzy model cloned */ public Model clone() { return new FuzzyModel(this); } /** * <p> * This methos return the size of the fuzzy model * </p> * @return The size of the fuzzy model */ int size() { return R.size(); } /** * <p> * This method return the number of consequents of the fuzzy model * </p> * @return The number of consequents */ int numConsequents() { return R.numConsequents(); } /** * <p> * This method obtain the consequent and the weight of the rule * </p> * @param n The position of the rule * @return */ FuzzyRule getComponent(int n) { return R.getComponent(n); } /** * <p> * This method assign the values of the fuzzy rule to another one * </p> * @param i The position of the rule * @param b A fuzzy rule */ void setComponent(int i, FuzzyRule b) { R.setComponent(i,b.clone()); } }