/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
/**
* <p>
* @author Written by Luciano S�nchez (University of Oviedo) 20/01/2004
* @author Modified by M.R. Su�rez (University of Oviedo) 18/12/2008
* @author Modified by Enrique A. de la Cal (University of Oviedo) 21/12/2008
* @version 1.0
* @since JDK1.5
* </p>
*/
package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model;
import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.*;
import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.*;
import keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.*;
// Wrappers used with genetic algorithms
public class FuzzyModel extends Model {
/**
* <p>
* Class for management of fuzzy models
* </p>
*/
RuleBase R;
int defuzType;
/**
* <p>
* Constructor. Generate a new rule base
* </p>
* @param a The fuzzy partition
* @param b The fuzzy partition
* @param c
* @param d
* @param td Type of defuzzifier
*/
public FuzzyModel(FuzzyPartition[] a, FuzzyPartition b, int c, int d, int td) {
R=new RuleBase(a,b,c,d);
defuzType=td;
}
/**
* <p>
* Construxtor. Generate a new rule base besed in another fuzzy model
* </p>
* @param m The fuzzy model
*/
public FuzzyModel(FuzzyModel m) {
R=m.R.clone();
defuzType=m.defuzType;
}
/**
* <p>
* This method asign a fuzzy mothed to another one
* </p>
* @param m The fuzzy model
*/
public void set(FuzzyModel m) {
R=m.R.clone();
defuzType=m.defuzType;
}
/**
* <p>
* This method defuzzified the output and return a value
* </p>
* @param x The output
* @return the output defuzzified
*/
public double output(double [] x) {
return R.defuzzify(R.output(x),defuzType);
}
/**
* <p>
* This method is for debug
* </p>
*/
public void debug() {
R.debug();
}
/**
* <p>
* This method clone a fuzzy model
* </p>
* @return The fuzzy model cloned
*/
public Model clone() {
return new FuzzyModel(this);
}
/**
* <p>
* This methos return the size of the fuzzy model
* </p>
* @return The size of the fuzzy model
*/
int size() {
return R.size();
}
/**
* <p>
* This method return the number of consequents of the fuzzy model
* </p>
* @return The number of consequents
*/
int numConsequents() {
return R.numConsequents();
}
/**
* <p>
* This method obtain the consequent and the weight of the rule
* </p>
* @param n The position of the rule
* @return
*/
FuzzyRule getComponent(int n) {
return R.getComponent(n);
}
/**
* <p>
* This method assign the values of the fuzzy rule to another one
* </p>
* @param i The position of the rule
* @param b A fuzzy rule
*/
void setComponent(int i, FuzzyRule b) {
R.setComponent(i,b.clone());
}
}