/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Luciano Sanchez (University of Oviedo) 21/07/2005 * @author Modified by J.R. Villar (University of Oviedo) 19/12/2008 * @version 1.0 * @since JDK1.4 * </p> */ package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ModelFuzzyGP; import keel.Algorithms.Shared.Parsing.*; import keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.*; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model.*; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Algorithms.*; import keel.Algorithms.Shared.Exceptions.*; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.*; import java.io.*; import java.util.StringTokenizer; import java.util.Vector; import org.core.*; public class ModelFuzzyGP { /** * <p> * ModelFuzzyGP is intended to generate a Fuzzy Rule Based System * (FRBS) model using an Genetic Programming (GP). * * This class makes used of the following classes: * {@link FuzzyGPModelIndividual}: the individual to be learned * {@link GeneticAlgorithm}: to optimize following the GP rules, The concrete * algorithm used depends on the Steady parameter * varying between the {@link GeneticAlgorithmSteady} if set, * otherwise {@link GeneticAlgorithmGenerational}. * * Detailed in: * * L. S�nchez, I. Couso, J.A. Corrales. Combining GP Operators With SA Search To * Evolve Fuzzy Rule Based Classifiers. Information Sciences 136:1-4 (2001) * 175-192. * * </p> */ //The Randomize object used in this class static Randomize rand; //The maximum number of Fuzzy Rules to be learned. final static int MAXFUZZYRULES=1000; /** * <p> * This private static method extract the dataset and the method's parameters * from the KEEL environment, carries out with the partitioning of the * input and output spaces, learn the FRBS model --which is a * {@link FuzzyGPModelIndividual} instance-- using the GP algorithm --which is an instance * of the GeneticAlgorithm class-- and print out the results with the validation * dataset. * * If the parameter Steady is not fixed then the GP used is the {@link GeneticAlgorithmGenerational}. * If that parameter is fixed then the GP used is the {@link GeneticAlgorithmSteady}. * </p> * @param tty unused boolean parameter, kept for compatibility * @param pc ProcessConfig object to obtain the train and test datasets * and the method's parameters. */ private static void fuzzyGPModelling(boolean tty, ProcessConfig pc) { try { String readALine=new String(); int lOption=0; int defaultNumberInputPartitions=0; int numberOfCrossovers=0; ProcessDataset pd=new ProcessDataset(); readALine=(String)pc.parInputData.get(ProcessConfig.IndexTrain); if (pc.parNewFormat) pd.processModelDataset(readALine,true); else pd.oldClassificationProcess(readALine); int nData=pd.getNdata(); // Number of examples int nVariables=pd.getNvariables(); // Number of variables int nInputs=pd.getNinputs(); // Number of inputs double[][] X = pd.getX(); // Input data double[] Y = pd.getY(); // Output data pd.showDatasetStatistics(); double[] inputMaximum = pd.getImaximum(); // Maximum and Minimum for input data double[] inputMinimum = pd.getIminimum(); double outputMaximum = pd.getOmaximum(); // Maximum and Minimum for output data double outputMinimum = pd.getOminimum(); int[] nInputPartitions=new int[nInputs]; // Linguistic partition terms int nOutputPartitions; // Partitions definition FuzzyPartition[] inputPartitions=new FuzzyPartition[nInputs]; for (int i=0;i<nInputs;i++) { nInputPartitions[i]=pc.parPartitionLabelNum; inputPartitions[i]=new FuzzyPartition(inputMinimum[i],inputMaximum[i],nInputPartitions[i]); } nOutputPartitions=pc.parPartitionLabelNum; FuzzyPartition outputPartitions=new FuzzyPartition(outputMinimum,outputMaximum,nOutputPartitions); int lPopulation=pc.parPopSize; int localnPopulations=pc.parIslandNumber; boolean STEADY=pc.parSteady; int defuzzificationType=RuleBase.DEFUZCDM; int localHeight=pc.parMaxHeigth; // Genetic Algorithm Optimization FuzzyGPModelIndividual p = new FuzzyGPModelIndividual(inputPartitions,outputPartitions,localHeight,pc.parFitnessType,rand,defuzzificationType); p.setExamples(X,Y); int nIterations=pc.parIterNumber; int lTournament=4; double mutacion=0.05; double lmutationAmpl=0.1; double migrationProb=0.001; double localOptProb=0.0; int localOptIterations=0; lTournament=pc.parTourSize; mutacion=pc.parMutProb; lmutationAmpl=pc.parMutAmpl; migrationProb=pc.parMigProb; localOptProb=pc.parLoProb; localOptIterations=pc.parLoIterNumber; GeneticAlgorithm AG; int crossoverID=OperatorIdent.GENERICROSSOVER; int mutationID=OperatorIdent.GENERICMUTATION; if (STEADY) AG=new GeneticAlgorithmSteady(p,lPopulation,localnPopulations, lTournament,mutacion,lmutationAmpl,migrationProb,localOptProb,localOptIterations, OperatorIdent.AMEBA,rand,crossoverID,mutationID); else AG=new GeneticAlgorithmGenerational(p,lPopulation,localnPopulations,mutacion,lmutationAmpl, migrationProb,localOptProb,localOptIterations,OperatorIdent.AMEBA,rand,crossoverID,mutationID); p=(FuzzyGPModelIndividual)AG.evolve(nIterations); // Result is printed p.debug(); pc.trainingResults(Y,p.getYo()); System.out.println("RMS Train = "+p.fitness()); ProcessDataset pdt = new ProcessDataset(); int nTest,nTestInputs,nTestVariables; readALine=(String)pc.parInputData.get(ProcessConfig.IndexTest); if (pc.parNewFormat) pdt.processModelDataset(readALine,false); else pdt.oldClassificationProcess(readALine); nTest = pdt.getNdata(); nTestVariables = pdt.getNvariables(); nTestInputs = pdt.getNinputs(); if (nTestInputs!=nInputs) throw new IOException("IOERR test file"); double[][] Xp=pdt.getX(); double [] Yp=pdt.getY(); pdt.showDatasetStatistics(); p.setExamples(Xp,Yp); System.out.println("RMS test = "+p.fitness()); pc.results(Yp,p.getYo()); } catch(FileNotFoundException e) { System.err.println(e+" Input file not found"); } catch(IOException e) { System.err.println(e+" Read error"); } catch(invalidFitness e) { System.err.println(e); } catch(invalidCrossover e) { System.err.println(e); } catch(invalidMutation e) { System.err.println(e); } catch(invalidOptim e) { System.err.println(e); } } /** * <p> * This public static method runs the algorithm that this class concerns with. * </p> * @param args Array of strings to sent parameters to the main program. The * path of the algorithm's parameters file must be given. */ public static void main(String args[]) { boolean tty=false; ProcessConfig pc=new ProcessConfig(); System.out.println("Reading configuration file: "+args[0]); if (pc.fileProcess(args[0])<0) return; int algo=pc.parAlgorithmType; rand=new Randomize(); rand.setSeed(pc.parSeed); ModelFuzzyGP pi=new ModelFuzzyGP(); pi.fuzzyGPModelling(tty,pc); } }