/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // ENRBF.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 25-11-2005. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Instance_Selection.ENRBF; import keel.Algorithms.Preprocess.Basic.*; import org.core.*; import java.util.StringTokenizer; import java.util.Arrays; public class ENRBF extends Metodo { /*Own parameters of the algorithm*/ double alpha, sigma; public ENRBF (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int i, j, k, l; int nClases; boolean marcas[]; int nSel; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; double Gtodos[]; double Gtotal; double probClass[]; double prob; boolean parar; boolean valido; long tiempo = System.currentTimeMillis(); /*Inicialization of the flagged instances vector for a posterior copy*/ marcas = new boolean[datosTrain.length]; Gtodos = new double[datosTrain.length]; for (i=0; i<datosTrain.length; i++) marcas[i] = true; nSel = datosTrain.length; /*Getting the number of different classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; probClass = new double[nClases]; /*Body of the algorithm. NRBF estimates probability of k-th class given vector x and a training set. Eliminate vector only if this probability is lower than other classes*/ for (i=0; i<datosTrain.length; i++) { Gtotal = 0; for (j=0; j<datosTrain.length; j++) { if (i != j) { Gtodos[j] = G (datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu, sigma); Gtotal += Gtodos[j]; } } Arrays.fill(probClass,0); for (j=0; j<nClases; j++) { for (k=0; k<datosTrain.length; k++) { if (i != k && clasesTrain[k] == j) { probClass[j] += Gtodos[k] / Gtotal; } } } /*Eliminate if only his probability is lower than other class*/ parar = false; prob = 0; for (j=0; j<nClases && !parar; j++) if (j == clasesTrain[i]) { parar = true; prob = probClass[j]; } valido = true; for (j=0; j<nClases && valido; j++) { if ((probClass[j]*alpha) > prob) valido = false; } if (!valido) { marcas[i] = false; nSel--; } } /*Building of the S set from the flags*/ nSel = 0; for (i=0; i<datosTrain.length; i++) if (marcas[i]) nSel++; conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (i=0, l=0; i<datosTrain.length; i++) { if (marcas[i]) { //the instance will be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[i][j]; conjR[l][j] = realTrain[i][j]; conjN[l][j] = nominalTrain[i][j]; conjM[l][j] = nulosTrain[i][j]; } clasesS[l] = clasesTrain[i]; l++; } } System.out.println("ENRBF "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); // COn conjS me vale. int trainRealClass[][]; int trainPrediction[][]; trainRealClass = new int[datosTrain.length][1]; trainPrediction = new int[datosTrain.length][1]; //Working on training for ( i=0; i<datosTrain.length; i++) { trainRealClass[i][0] = clasesTrain[i]; trainPrediction[i][0] = KNN.evaluate(datosTrain[i],conjS, nClases, clasesS, 1); } KNN.writeOutput(ficheroSalida[0], trainRealClass, trainPrediction, entradas, salida, relation); //Working on test int realClass[][] = new int[datosTest.length][1]; int prediction[][] = new int[datosTest.length][1]; //Check time for (i=0; i<realClass.length; i++) { realClass[i][0] = clasesTest[i]; prediction[i][0]= KNN.evaluate(datosTest[i],conjS, nClases, clasesS, 1); } KNN.writeOutput(ficheroSalida[1], realClass, prediction, entradas, salida, relation); } double G (double x[], double rx[], int nx[], boolean mx[], double xi[], double rxi[], int nxi[], boolean mxi[], boolean distanceEu, double sigma) { double distancia; distancia = KNN.distancia(x, rx, nx, mx, xi, rxi, nxi, mxi, distanceEu); distancia *= distancia; return Math.exp((-1)*distancia/sigma); } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroValidation = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the sigma parameter*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); sigma = Double.parseDouble(tokens.nextToken().substring(1)); /*Getting the alpha parameter*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); alpha = Double.parseDouble(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; } }