/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * File: RandomUnderSampling.java * </p> * * The Random Under Sampling algorithm is an undersampling method used to deal with the * imbalanced problem that deletes negative instances randomly. * * @author Written by Salvador Garcia Lopez (University of Granada) 30/03/2006 * @author Modified by Victoria Lopez Morales (University of Granada) 23/07/2010 * @author Modified by Victoria Lopez Morales (University of Granada) 21/09/2010 * @version 0.1 * @since JDK1.5 * */ package keel.Algorithms.ImbalancedClassification.Resampling.RandomUnderSampling; import keel.Algorithms.Preprocess.Basic.*; import keel.Dataset.Attribute; import keel.Dataset.Attributes; import keel.Dataset.Instance; import org.core.*; import java.util.StringTokenizer; import java.util.Arrays; public class RandomUnderSampling extends Metodo { /** * <p> * The Random Under Sampling algorithm is an oversampling method used to deal with the imbalanced * problem. * </p> */ /*Own parameters of the algorithm*/ private long semilla; /** * <p> * Constructor of the class. It configures the execution of the algorithm by * reading the configuration script that indicates the parameters that are * going to be used. * </p> * * @param ficheroScript Name of the configuration script that indicates the * parameters that are going to be used during the execution of the algorithm */ public RandomUnderSampling (String ficheroScript) { super (ficheroScript); } /** * <p> * The main method of the class that includes the operations of the algorithm. * It includes all the operations that the algorithm has and finishes when it * writes the output information into files. * </p> */ public void run () { int nPos = 0; int nNeg = 0; int i, j, l, m; int tmp; int posID; int negatives[]; int unders[]; double conjS[][]; int clasesS[]; int tamS; boolean escogido[]; long tiempo = System.currentTimeMillis(); /*Count of number of positive and negative examples*/ for (i=0; i<clasesTrain.length; i++) { if (clasesTrain[i] == 0) nPos++; else nNeg++; } if (nPos > nNeg) { tmp = nPos; nPos = nNeg; nNeg = tmp; posID = 1; } else { posID = 0; } /*Localize the negative instances*/ negatives = new int[nNeg]; escogido = new boolean[nNeg]; Arrays.fill(escogido,false); for (i=0, j=0; i<clasesTrain.length; i++) { if (clasesTrain[i] != posID) { negatives[j] = i; j++; } } /*Obtain the undersampling array taking account the previous array*/ unders = new int[nPos]; Randomize.setSeed (semilla); for (i=0; i<unders.length; i++) { do { tmp = Randomize.Randint(0, nNeg - 1); } while (escogido[tmp] == true); unders[i] = negatives[tmp]; escogido[tmp] = true; } tamS = 2*nPos; /*Construction of the S set from the previous vector S*/ conjS = new double[tamS][datosTrain[0].length]; clasesS = new int[tamS]; for (j=0, m=0; j<datosTrain.length; j++) { if (clasesTrain[j] == posID) { for (l = 0; l < datosTrain[0].length; l++) conjS[m][l] = datosTrain[j][l]; clasesS[m] = clasesTrain[j]; m++; } } for (j=0;m<tamS; m++,j++) { for (l=0; l<datosTrain[0].length; l++) conjS[m][l] = datosTrain[unders[j]][l]; clasesS[m] = clasesTrain[unders[j]]; } System.out.println("RandomUnderSampling "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjS, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } /** * <p> * Obtains the parameters used in the execution of the algorithm and stores * them in the private variables of the class * </p> * * @param ficheroScript Name of the configuration script that indicates the * parameters that are going to be used during the execution of the algorithm */ public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the seed*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); semilla = Long.parseLong(tokens.nextToken().substring(1)); } /** * This function builds the data matrix for reference data and normalizes inputs values */ protected void normalizar () throws CheckException { int i, j, k; Instance temp; double caja[]; StringTokenizer tokens; boolean nulls[]; /*Check if dataset corresponding with a classification problem*/ if (Attributes.getOutputNumAttributes() < 1) { throw new CheckException ("This dataset haven?t outputs, so it not corresponding to a classification problem."); } else if (Attributes.getOutputNumAttributes() > 1) { throw new CheckException ("This dataset have more of one output."); } if (Attributes.getOutputAttribute(0).getType() == Attribute.REAL) { throw new CheckException ("This dataset have an input attribute with floating values, so it not corresponding to a classification problem."); } entradas = Attributes.getInputAttributes(); salida = Attributes.getOutputAttribute(0); nEntradas = Attributes.getInputNumAttributes(); tokens = new StringTokenizer (training.getHeader()," \n\r"); tokens.nextToken(); relation = tokens.nextToken(); datosTrain = new double[training.getNumInstances()][Attributes.getInputNumAttributes()]; clasesTrain = new int[training.getNumInstances()]; caja = new double[1]; nulosTrain = new boolean[training.getNumInstances()][Attributes.getInputNumAttributes()]; nominalTrain = new int[training.getNumInstances()][Attributes.getInputNumAttributes()]; realTrain = new double[training.getNumInstances()][Attributes.getInputNumAttributes()]; for (i=0; i<training.getNumInstances(); i++) { temp = training.getInstance(i); nulls = temp.getInputMissingValues(); datosTrain[i] = training.getInstance(i).getAllInputValues(); for (j=0; j<nulls.length; j++) if (nulls[j]) { datosTrain[i][j]=0.0; nulosTrain[i][j] = true; } caja = training.getInstance(i).getAllOutputValues(); clasesTrain[i] = (int) caja[0]; for (k = 0; k < datosTrain[i].length; k++) { if (Attributes.getInputAttribute(k).getType() == Attribute.NOMINAL) { nominalTrain[i][k] = (int)datosTrain[i][k]; datosTrain[i][k] /= Attributes.getInputAttribute(k). getNominalValuesList().size() - 1; } else { realTrain[i][k] = datosTrain[i][k]; datosTrain[i][k] -= Attributes.getInputAttribute(k).getMinAttribute(); datosTrain[i][k] /= Attributes.getInputAttribute(k).getMaxAttribute() - Attributes.getInputAttribute(k).getMinAttribute(); if (Double.isNaN(datosTrain[i][k])){ datosTrain[i][k] = realTrain[i][k]; } } } } datosTest = new double[test.getNumInstances()][Attributes.getInputNumAttributes()]; clasesTest = new int[test.getNumInstances()]; caja = new double[1]; for (i=0; i<test.getNumInstances(); i++) { temp = test.getInstance(i); nulls = temp.getInputMissingValues(); datosTest[i] = test.getInstance(i).getAllInputValues(); for (j=0; j<nulls.length; j++) if (nulls[j]) { datosTest[i][j]=0.0; } caja = test.getInstance(i).getAllOutputValues(); clasesTest[i] = (int) caja[0]; } } //end-method }