/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /*********************************************************************** This file is part of the Fuzzy Instance Based Learning package, a Java package implementing Fuzzy Nearest Neighbor Classifiers as complementary material for the paper: Fuzzy Nearest Neighbor Algorithms: Taxonomy, Experimental analysis and Prospects Copyright (C) 2012 J. Derrac (jderrac@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) F. Herrera (herrera@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * * File: FuzzyNPC.java * * The FuzzyNPC algorithm. * * @author Written by Joaqu�n Derrac (University of Granada) 13/11/2011 * @version 1.0 * @since JDK1.5 * */ package keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyNPC; import java.text.DecimalFormat; import java.text.DecimalFormatSymbols; import java.util.Arrays; import java.util.StringTokenizer; import org.core.Files; import keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm; import keel.Algorithms.Fuzzy_Instance_Based_Learning.ReportTool; import keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer; import keel.Algorithms.Fuzzy_Instance_Based_Learning.Util; public class FuzzyNPC extends FuzzyIBLAlgorithm { private static final double MAX_NORM = 100000000; private double M; //M value for Fuzzy K-NN norm private double referenceMembership [][]; private double testMembership [][]; private double prototypes [][]; /** * Reads the parameters of the algorithm. * * @param script Configuration script * */ @Override protected void readParameters(String script) { String file; String line; StringTokenizer fileLines, tokens; file = Files.readFile (script); fileLines = new StringTokenizer (file,"\n\r"); //Discard in/out files definition fileLines.nextToken(); fileLines.nextToken(); fileLines.nextToken(); //Getting the M parameter line = fileLines.nextToken(); tokens = new StringTokenizer (line, "="); tokens.nextToken(); M = Double.parseDouble(tokens.nextToken().substring(1)); } //end-method /** * Main builder. Initializes the methods' structures * * @param script Configuration script */ public FuzzyNPC(String script){ readDataFiles(script); //Naming the algorithm name="Fuzzy Nearest Prototype Classifier"; referenceMembership = new double [referenceData.length][nClasses]; testMembership = new double [testData.length][nClasses]; //Initialization of Reporting tool ReportTool.setOutputFile(outFile[2]); } //end-method /** * Generates the model of the algorithm */ public void generateModel (){ //Start of model time Timer.resetTime(); //compute prototypes prototypes = new double [nClasses][inputAtt]; for(int i=0;i<nClasses;i++){ Arrays.fill(prototypes[i],0.0); } for(int i=0;i<trainData.length;i++){ for(int j=0;j<trainData[0].length;j++){ prototypes[trainOutput[i]][j]+=trainData[i][j]; } } for(int i=0;i<nClasses;i++){ for(int j=0;j<trainData[0].length;j++){ if(nInstances[i]>0){ prototypes[i][j]/=(double)nInstances[i]; } } } //End of model time Timer.setModelTime(); //Showing results System.out.println(name+" "+ relation + " Model " + Timer.getModelTime() + "s"); } //end-method /** * Classifies the training set (leave-one-out) */ public void classifyTrain(){ //Start of training time Timer.resetTime(); classifyTrainSet(); //End of training time Timer.setTrainingTime(); //Showing results System.out.println(name+" "+ relation + " Training " + Timer.getTrainingTime() + "s"); } //end-method /** * Classifies the test set */ public void classifyTest(){ //Start of training time Timer.resetTime(); classifyTestSet(); //End of test time Timer.setTestTime(); //Showing results System.out.println(name+" "+ relation + " Test " + Timer.getTestTime() + "s"); } //end-method /** * Classifies the training set */ public void classifyTrainSet(){ for(int i=0;i<trainData.length;i++){ computeTrainMembership(i,referenceData[i]); trainPrediction[i]=computeClass(referenceMembership[i]); } } //end-method /** * Classifies the test set */ public void classifyTestSet(){ for(int i=0;i<testData.length;i++){ computeTestMembership(i,testData[i]); testPrediction[i]=computeClass(testMembership[i]); } } //end-method /** * Computes the class of a instance given its membership array * @param pertenence Membership array * * @return Class assigned (crisp) */ private int computeClass(double pertenence[]){ double max = Double.MIN_VALUE; int output=-1; for(int i=0; i< pertenence.length;i++){ if(max<pertenence[i]){ max=pertenence[i]; output=i; } } return output; } //end-method /** * Evaluates a instance to predict its class membership * * @param index Index of the instance in the test set * @param example Instance evaluated * */ private void computeTrainMembership(int index, double example[]) { double [] norms; double sumNorm; norms = new double [nClasses]; sumNorm=0.0; for (int i=0; i<nClasses; i++) { if(nInstances[i]>0){ norms[i] = Util.euclideanDistance(prototypes[i],example); norms[i] = 1.0/ Math.pow(norms[i],(2.0/(M-1.0))); norms[i]=Math.min(norms[i],MAX_NORM); sumNorm+=norms[i]; } } for (int i=0; i<nClasses; i++) { if(nInstances[i]>0){ referenceMembership [index][i] = norms[i]/sumNorm; } else{ referenceMembership [index][i]= 0.0; } } } //end-method /** * Evaluates a instance to predict its class membership * * @param index Index of the instance in the test set * @param example Instance evaluated * */ private void computeTestMembership(int index, double example[]) { double [] norms; double sumNorm; norms = new double [nClasses]; sumNorm=0.0; for (int i=0; i<nClasses; i++) { if(nInstances[i]>0){ norms[i] = Util.euclideanDistance(prototypes[i],example); norms[i] = 1.0/ Math.pow(norms[i],(2.0/(M-1.0))); norms[i]=Math.min(norms[i],MAX_NORM); sumNorm+=norms[i]; } } for (int i=0; i<nClasses; i++) { if(nInstances[i]>0){ testMembership [index][i] = norms[i]/sumNorm; } else{ testMembership [index][i]= 0.0; } } } //end-method /** * Reports the results obtained */ public void printReport(){ writeOutput(outFile[0], trainOutput, trainPrediction); writeOutput(outFile[1], testOutput, testPrediction); ReportTool.setResults(trainOutput,trainPrediction,testOutput,testPrediction,nClasses); ReportTool.printReport(); } //end-method } //end-class