/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // IB2.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 14-7-2004. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Instance_Selection.IB2; import keel.Algorithms.Preprocess.Basic.*; import keel.Dataset.*; import org.core.*; import java.util.StringTokenizer; import java.util.Vector; public class IB2 extends Metodo { /*Own parameters of the algorithm*/ private long semilla; private int k; public IB2 (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int i, j, l, m; int nClases; int claseObt; boolean marcas[]; int nSel; double conjS[][]; int clasesS[]; int baraje[]; int pos, tmp; long tiempo = System.currentTimeMillis(); /*Getting the number of differents classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; /*Shuffle the train set*/ baraje = new int[datosTrain.length]; Randomize.setSeed (semilla); for (i=0; i<datosTrain.length; i++) baraje[i] = i; for (i=0; i<datosTrain.length; i++) { pos = Randomize.Randint (i, datosTrain.length-1); tmp = baraje[i]; baraje[i] = baraje[pos]; baraje[pos] = tmp; } /*Inicialization of the flagged instaces vector for a posterior elimination*/ marcas = new boolean[datosTrain.length]; for (i=0; i<datosTrain.length; i++) marcas[i] = false; if (datosTrain.length > 0) { marcas[baraje[0]] = true; //the first instance is included always nSel = 1; } else { System.err.println("Input dataset is empty"); nSel = 0; } /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance must be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } /*Body of the IB2 algorithm. If an instance of the train set is misclassified with the remainings in the S set, it is included*/ for (i=1; i<datosTrain.length; i++) { /*Classify the instance eliminated in this iteration*/ claseObt = KNN.evaluacionKNN2 (k, conjS, clasesS, datosTrain[baraje[i]], nClases); if (claseObt != clasesTrain[baraje[i]]) { //incorrect clasification, add this instance marcas[baraje[i]] = true; nSel++; /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance will be evaluated for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } } } System.out.println("IB2 "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); // COn conjS me vale. int trainRealClass[][]; int trainPrediction[][]; trainRealClass = new int[datosTrain.length][1]; trainPrediction = new int[datosTrain.length][1]; //Working on training for ( i=0; i<datosTrain.length; i++) { trainRealClass[i][0] = clasesTrain[i]; trainPrediction[i][0] = KNN.evaluate(datosTrain[i],conjS, nClases, clasesS, this.k); } KNN.writeOutput(ficheroSalida[0], trainRealClass, trainPrediction, entradas, salida, relation); //Working on test int realClass[][] = new int[datosTest.length][1]; int prediction[][] = new int[datosTest.length][1]; //Check time for (i=0; i<realClass.length; i++) { realClass[i][0] = clasesTest[i]; prediction[i][0]= KNN.evaluate(datosTest[i],conjS, nClases, clasesS, this.k); } KNN.writeOutput(ficheroSalida[1], realClass, prediction, entradas, salida, relation); } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroValidation = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the seed*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); semilla = Long.parseLong(tokens.nextToken().substring(1)); /*Getting the number of neighbors*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); k = Integer.parseInt(tokens.nextToken().substring(1)); } }