/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Juli�n Luengo Mart�n 04/12/2006 * @version 0.1 * @since JDK 1.5 * </p> */ package keel.Algorithms.Preprocess.Missing_Values.fkmeans; import java.io.*; import java.util.*; import keel.Dataset.*; import keel.Algorithms.Preprocess.Basic.*; import org.core.*; /** * <p> * This class imputes the missing values by means of the Fuzzy K-means clustering algorithm. It creates a set of K fuzzy-clusters, and the missing values * are filled in with the all the centroids, weighting the values with the membership degree of the instance to each cluster (based on the distance). * </p> */ public class fkmeans { double [] mean = null; double [] std_dev = null; double tempData = 0; String[][] X = null; //matrix of transformed data FreqList[] timesSeen = null; //matrix with frequences of attribute values String[] mostCommon; int ndatos = 0; int nentradas = 0; int tipo = 0; int direccion = 0; int nvariables = 0; int nsalidas = 0; int K = 1; //number of clusters long semilla = 12345678; double minError = 1; int maxIter = 1000; double fuzzifier; InstanceSet IS,IStest; String input_train_name = new String(); String input_test_name = new String(); String output_train_name = new String(); String output_test_name = new String(); String temp = new String(); String data_out = new String(""); /** Creates a new instance of fkmeans * @param fileParam The path to the configuration file with all the parameters in KEEL format */ public fkmeans(String fileParam) { config_read(fileParam); IS = new InstanceSet(); IStest = new InstanceSet(); } //Write data matrix X to disk, in KEEL format private void write_results(String output){ //File OutputFile = new File(output_train_name.substring(1, output_train_name.length()-1)); try { FileWriter file_write = new FileWriter(output); file_write.write(IS.getHeader()); //now, print the normalized data file_write.write("@data\n"); for(int i=0;i<ndatos;i++){ file_write.write(X[i][0]); for(int j=1;j<nvariables;j++){ file_write.write(","+X[i][j]); } file_write.write("\n"); } file_write.close(); } catch (IOException e) { System.out.println("IO exception = " + e ); System.exit(-1); } } //Read the pattern file, and parse data into strings private void config_read(String fileParam){ File inputFile = new File(fileParam); if (inputFile == null || !inputFile.exists()) { System.out.println("parameter "+fileParam+" file doesn't exists!"); System.exit(-1); } //begin the configuration read from file try { FileReader file_reader = new FileReader(inputFile); BufferedReader buf_reader = new BufferedReader(file_reader); //FileWriter file_write = new FileWriter(outputFile); String line; do{ line = buf_reader.readLine(); }while(line.length()==0); //avoid empty lines for processing -> produce exec failure String out[]= line.split("algorithm = "); //alg_name = new String(out[1]); //catch the algorithm name //input & output filenames do{ line = buf_reader.readLine(); }while(line.length()==0); out= line.split("inputData = "); out = out[1].split("\\s\""); input_train_name = new String(out[0].substring(1, out[0].length()-1)); input_test_name = new String(out[1].substring(0, out[1].length()-1)); if(input_test_name.charAt(input_test_name.length()-1)=='"') input_test_name = input_test_name.substring(0,input_test_name.length()-1); do{ line = buf_reader.readLine(); }while(line.length()==0); out = line.split("outputData = "); out = out[1].split("\\s\""); output_train_name = new String(out[0].substring(1, out[0].length()-1)); output_test_name = new String(out[1].substring(0, out[1].length()-1)); if(output_test_name.charAt(output_test_name.length()-1)=='"') output_test_name = output_test_name.substring(0,output_test_name.length()-1); //parameters do{ line = buf_reader.readLine(); }while(line.length()==0); out = line.split("seed = "); semilla = (new Long(out[1])).longValue(); //parse the string into a integer do{ line = buf_reader.readLine(); }while(line.length()==0); out = line.split("k = "); K = (new Integer(out[1])).intValue(); //parse the string into a integer do{ line = buf_reader.readLine(); }while(line.length()==0); out = line.split("error = "); minError = (new Double(out[1])).doubleValue(); //parse the string into a double do{ line = buf_reader.readLine(); }while(line.length()==0); out = line.split("iterations = "); maxIter = (new Integer(out[1])).intValue(); //parse the string into a double do{ line = buf_reader.readLine(); }while(line.length()==0); out = line.split("m = "); fuzzifier = (new Double(out[1])).doubleValue(); //parse the string into a integer file_reader.close(); } catch (IOException e) { System.out.println("IO exception = " + e ); e.printStackTrace(); System.exit(-1); } } /** * <p> * Computes the distance between two instances (without previous normalization) * </p> * @param i First instance * @param j Second instance * @return The Euclidean distance between i and j */ private double distance(Instance i,Instance j){ double dist = 0; int in = 0; int out = 0; for(int l = 0; l < nvariables;l++){ Attribute a = Attributes.getAttribute(l); direccion = a.getDirectionAttribute(); tipo = a.getType(); if(direccion == Attribute.INPUT){ if(tipo != Attribute.NOMINAL && !i.getInputMissingValues(in)){ //real value, apply euclidean distance dist += (i.getInputRealValues(in)-j.getInputRealValues(in))*(i.getInputRealValues(in)-j.getInputRealValues(in)); } else{ if(!i.getInputMissingValues(in) && i.getInputNominalValues(in)!=j.getInputNominalValues(in)) dist += 1; } in++; }else{ if(direccion == Attribute.OUTPUT){ if(tipo != Attribute.NOMINAL && !i.getOutputMissingValues(out)){ dist += (i.getOutputRealValues(out)-j.getOutputRealValues(out))*(i.getOutputRealValues(out)-j.getOutputRealValues(out)); } else{ if(!i.getOutputMissingValues(out) && i.getOutputNominalValues(out)!=j.getOutputNominalValues(out)) dist += 1; } out++; } } } return dist; } /** * <p> * Process the training and test files provided in the parameters file to the constructor. * </p> */ public void process(){ //declarations double []outputs; double []outputs2; Instance neighbor; double dist,mean,tmp; int actual; Randomize rnd = new Randomize(); Instance ex; fuzzygCenter kmeans = null; int iterations = 0; double E; double prevE; int totalMissing = 0; boolean allMissing = true; rnd.setSeed(semilla); //PROCESS try { // Load in memory a dataset that contains a classification problem IS.readSet(input_train_name,true); int in = 0; int out = 0; ndatos = IS.getNumInstances(); nvariables = Attributes.getNumAttributes(); nentradas = Attributes.getInputNumAttributes(); nsalidas = Attributes.getOutputNumAttributes(); X = new String[ndatos][nvariables];//matrix with transformed data kmeans = new fuzzygCenter(K,ndatos,nvariables,fuzzifier); timesSeen = new FreqList[nvariables]; mostCommon = new String[nvariables]; //first, we choose k 'means' randomly from all //instances totalMissing = 0; for(int i = 0;i < ndatos;i++){ Instance inst = IS.getInstance(i); if(inst.existsAnyMissingValue()) totalMissing++; } if(totalMissing == ndatos) allMissing = true; else allMissing = false; for(int numMeans = 0;numMeans<K;numMeans++){ do{ actual = (int) (ndatos*rnd.Rand()); ex = IS.getInstance(actual); }while(ex.existsAnyMissingValue() && !allMissing); kmeans.copyCenter(ex,numMeans); } //now, iterate adjusting clusters' centers and //instances to them prevE = 0; iterations = 0; do{ for(int i = 0;i < ndatos;i++){ Instance inst = IS.getInstance(i); kmeans.setMembershipOf(inst,i); } //set new centers kmeans.recalculateCenters(IS); //compute RMSE E = 0; for(int i = 0;i < ndatos;i++){ Instance inst = IS.getInstance(i); for(int k=0;k<K;k++){ E += (kmeans.distance(inst,k)*kmeans.getMembershipOf(i,k)); } } iterations++; //System.out.println(iterations+"\t"+E); if(Math.abs(prevE - E ) == 0) iterations = maxIter; else prevE = E; }while(E>minError && iterations < maxIter); for(int i = 0;i < ndatos;i++){ Instance inst = IS.getInstance(i); in = 0; out = 0; for(int j = 0; j < nvariables;j++){ Attribute a = Attributes.getAttribute(j); direccion = a.getDirectionAttribute(); tipo = a.getType(); if(direccion == Attribute.INPUT){ if(tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)){ X[i][j] = new String(String.valueOf(inst.getInputRealValues(in))); } else{ if(!inst.getInputMissingValues(in)) X[i][j] = inst.getInputNominalValues(in); else{ if(tipo != Attribute.NOMINAL){ tmp = -1.0; for(int k=0;k<K;k++){ if(kmeans.valueAt(k,j).compareTo("<null>")!=0){ if(tmp==-1.0) tmp = 0.0; tmp += kmeans.getMembershipOf(i,k)*new Double(kmeans.valueAt(k,j)).doubleValue(); if(tmp < a.getMinAttribute()) tmp = a.getMinAttribute(); if(tmp > a.getMaxAttribute()) tmp = a.getMaxAttribute(); } } if(tmp!=-1.0){ if(tipo==Attribute.INTEGER) tmp = (int) tmp; X[i][j] = new String(String.valueOf(tmp)); } else X[i][j] = "<null>"; }else{ actual = kmeans.getClusterOf(inst); X[i][j] = new String(kmeans.valueAt(actual,j)); } } } in++; } else{ if(direccion == Attribute.OUTPUT){ if(tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)){ X[i][j] = new String(String.valueOf(inst.getOutputRealValues(out))); } else{ if(!inst.getOutputMissingValues(out)) X[i][j] = inst.getOutputNominalValues(out); else{ if(tipo != Attribute.NOMINAL){ tmp = -1.0; for(int k=0;k<K;k++){ if(kmeans.valueAt(k,j).compareTo("<null>")!=0){ if(tmp==-1.0) tmp = 0.0; tmp += kmeans.getMembershipOf(i,k)*new Double(kmeans.valueAt(k,j)).doubleValue(); if(tmp < a.getMinAttribute()) tmp = a.getMinAttribute(); if(tmp > a.getMaxAttribute()) tmp = a.getMaxAttribute(); } } if(tmp!=-1.0){ if(tipo==Attribute.INTEGER) tmp = (int) tmp; X[i][j] = new String(String.valueOf(tmp)); } else X[i][j] = "<null>"; }else{ actual = kmeans.getClusterOf(inst); X[i][j] = new String(kmeans.valueAt(actual,j)); } } } out++; } } } } }catch (Exception e){ System.out.println("Dataset exception = " + e ); e.printStackTrace(); System.exit(-1); } write_results(output_train_name); /***************************************************************************************/ //does a test file associated exist? if(input_train_name.compareTo(input_test_name)!=0){ try { // Load in memory a dataset that contains a classification problem IStest.readSet(input_test_name,false); int in = 0; int out = 0; ndatos = IStest.getNumInstances(); nvariables = Attributes.getNumAttributes(); nentradas = Attributes.getInputNumAttributes(); nsalidas = Attributes.getOutputNumAttributes(); X = new String[ndatos][nvariables];//matrix with transformed data timesSeen = new FreqList[nvariables]; mostCommon = new String[nvariables]; for(int i = 0;i < ndatos;i++){ Instance inst = IStest.getInstance(i); in = 0; out = 0; for(int j = 0; j < nvariables;j++){ Attribute a = Attributes.getAttribute(j); direccion = a.getDirectionAttribute(); tipo = a.getType(); if(direccion == Attribute.INPUT){ if(tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)){ X[i][j] = new String(String.valueOf(inst.getInputRealValues(in))); } else{ if(!inst.getInputMissingValues(in)) X[i][j] = inst.getInputNominalValues(in); else{ if(tipo != Attribute.NOMINAL){ tmp = -1.0; for(int k=0;k<K;k++){ if(kmeans.valueAt(k,j).compareTo("<null>")!=0){ if(tmp==-1.0) tmp = 0.0; tmp += kmeans.getMembershipOf(i,k)*new Double(kmeans.valueAt(k,j)).doubleValue(); if(tmp < a.getMinAttribute()) tmp = a.getMinAttribute(); if(tmp > a.getMaxAttribute()) tmp = a.getMaxAttribute(); } } if(tmp!=-1.0){ if(tipo==Attribute.INTEGER) tmp = (int) tmp; X[i][j] = new String(String.valueOf(tmp)); } else X[i][j] = "<null>"; }else{ actual = kmeans.getClusterOf(inst); X[i][j] = new String(kmeans.valueAt(actual,j)); } } } in++; } else{ if(direccion == Attribute.OUTPUT){ if(tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)){ X[i][j] = new String(String.valueOf(inst.getOutputRealValues(out))); } else{ if(!inst.getOutputMissingValues(out)) X[i][j] = inst.getOutputNominalValues(out); else{ if(tipo != Attribute.NOMINAL){ tmp = -1.0; for(int k=0;k<K;k++){ if(kmeans.valueAt(k,j).compareTo("<null>")!=0){ if(tmp==-1.0) tmp = 0.0; tmp += kmeans.getMembershipOf(i,k)*new Double(kmeans.valueAt(k,j)).doubleValue(); if(tmp < a.getMinAttribute()) tmp = a.getMinAttribute(); if(tmp > a.getMaxAttribute()) tmp = a.getMaxAttribute(); } } if(tmp!=-1.0){ if(tipo==Attribute.INTEGER) tmp = (int) tmp; X[i][j] = new String(String.valueOf(tmp)); } else X[i][j] = "<null>"; }else{ actual = kmeans.getClusterOf(inst); X[i][j] = new String(kmeans.valueAt(actual,j)); } } } out++; } } } } }catch (Exception e){ System.out.println("Dataset exception = " + e ); e.printStackTrace(); System.exit(-1); } write_results(output_test_name); } } }