/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /*********************************************************************** This file is part of the Fuzzy Instance Based Learning package, a Java package implementing Fuzzy Nearest Neighbor Classifiers as complementary material for the paper: Fuzzy Nearest Neighbor Algorithms: Taxonomy, Experimental analysis and Prospects Copyright (C) 2012 J. Derrac (jderrac@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) F. Herrera (herrera@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * * File: FCMKNN.java * * The FCMKNN algorithm. * * @author Written by Joaqu�n Derrac (University of Granada) 13/11/2011 * @version 1.0 * @since JDK1.5 * */ package keel.Algorithms.Fuzzy_Instance_Based_Learning.FCMKNN; import java.text.DecimalFormat; import java.text.DecimalFormatSymbols; import java.util.Arrays; import java.util.StringTokenizer; import org.core.Files; import org.core.Randomize; import keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm; import keel.Algorithms.Fuzzy_Instance_Based_Learning.ReportTool; import keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer; import keel.Algorithms.Fuzzy_Instance_Based_Learning.Util; public class FCMKNN extends FuzzyIBLAlgorithm { private double centroids [][]; private double membership [][]; private double M; private int K; private double epsilon; private int maxIterations; private double delta; private double referenceMembership [][]; private double testMembership [][]; /** * Reads the parameters of the algorithm. * * @param script Configuration script * */ @Override protected void readParameters(String script) { String file; String line; StringTokenizer fileLines, tokens; file = Files.readFile (script); fileLines = new StringTokenizer (file,"\n\r"); //Discard in/out files definition fileLines.nextToken(); fileLines.nextToken(); fileLines.nextToken(); //Getting the seed line = fileLines.nextToken(); tokens = new StringTokenizer (line, "="); tokens.nextToken(); seed = Long.parseLong(tokens.nextToken().substring(1)); //Getting the K parameter line = fileLines.nextToken(); tokens = new StringTokenizer (line, "="); tokens.nextToken(); K = Integer.parseInt(tokens.nextToken().substring(1)); //Getting the M parameter line = fileLines.nextToken(); tokens = new StringTokenizer (line, "="); tokens.nextToken(); M = Double.parseDouble(tokens.nextToken().substring(1)); //Getting the Max Iterations parameter line = fileLines.nextToken(); tokens = new StringTokenizer (line, "="); tokens.nextToken(); maxIterations = Integer.parseInt(tokens.nextToken().substring(1)); //Getting the delta parameter line = fileLines.nextToken(); tokens = new StringTokenizer (line, "="); tokens.nextToken(); delta = Double.parseDouble(tokens.nextToken().substring(1)); } //end-method /** * Main builder. Initializes the methods' structures * * @param script Configuration script */ public FCMKNN(String script){ readDataFiles(script); //Naming the algorithm name="Fuzzy C-Means K-NN"; centroids = new double [nClasses][inputAtt]; membership = new double [trainData.length][nClasses]; referenceMembership = new double [referenceData.length][nClasses]; testMembership = new double [testData.length][nClasses]; //Initialization of random generator Randomize.setSeed(seed); //Initialization of Reporting tool ReportTool.setOutputFile(outFile[2]); } //end-method /** * Generates the model of the algorithm */ public void generateModel (){ double newEpsilon; //Start of model time Timer.resetTime(); double term = 0.7/(double)(nClasses-1); //Initialization of the membership matrix //0.7 is assigned to the labeled instance in the training //set. 0.3 is split between the rest of classes for(int i=0;i<trainData.length;i++){ Arrays.fill(membership[i],term); membership[i][trainOutput[i]]=0.3; } epsilon=Double.MAX_VALUE; newEpsilon=Double.MAX_VALUE; int iterations=0; do{ epsilon=newEpsilon; computeCentroids(); newEpsilon=computeMembership(); System.out.println("Iteration "+iterations+" Error: "+newEpsilon); iterations++; }while((Math.abs(epsilon-newEpsilon)>delta)&&(iterations<maxIterations)); //End of model time Timer.setModelTime(); //Showing results System.out.println(name+" "+ relation + " Model " + Timer.getModelTime() + "s"); } //end-method private double computeMembership(){ double distances [] = new double [centroids.length]; double exp = 2.0 / (M-1.0); double difference; double sum=0.0; difference=0.0; for(int i=0;i<trainData.length;i++){ //compute distances to centroids for(int c=0;c<centroids.length;c++){ distances[c]=Util.euclideanDistance(trainData[i], centroids[c]); } //compute memberships for(int c=0;c<centroids.length;c++){ sum=0.0; for(int k=0;k<centroids.length;k++){ sum+=Math.pow(distances[c]/distances[k],exp); } membership[i][c]=1.0/sum; } } //test difference difference=0.0; for(int c=0;c<centroids.length;c++){ for(int i=0;i<trainData.length;i++){ difference+=Math.pow(membership[i][c],M)*Util.euclideanDistance(trainData[i], centroids[c]); } } return difference; } private void computeCentroids(){ double sumW[]; double term; for(int i=0;i<nClasses;i++){ Arrays.fill(centroids[i],0.0); } sumW= new double [nClasses]; Arrays.fill(sumW,0.0); for(int i=0;i<trainData.length;i++){ for(int j=0;j<nClasses;j++){ term = Math.pow(membership[i][j],M); for(int k=0;k<inputAtt;k++){ centroids[j][k]+=(term*trainData[i][k]); } sumW[j]+=term; } } for(int i=0;i<nClasses;i++){ for(int k=0;k<inputAtt;k++){ centroids[i][k]/=sumW[i]; } } } //end-method /** * Classifies the training set (leave-one-out) */ public void classifyTrain(){ //Start of training time Timer.resetTime(); classifyTrainSet(); //End of training time Timer.setTrainingTime(); //Showing results System.out.println(name+" "+ relation + " Training " + Timer.getTrainingTime() + "s"); } //end-method /** * Classifies the test set */ public void classifyTest(){ //Start of training time Timer.resetTime(); classifyTestSet(); //End of test time Timer.setTestTime(); //Showing results System.out.println(name+" "+ relation + " Test " + Timer.getTestTime() + "s"); } //end-method /** * Classifies the training set */ public void classifyTrainSet(){ for(int i=0;i<trainData.length;i++){ computeTrainMembership(i,referenceData[i]); trainPrediction[i]=computeClass(referenceMembership[i]); } } //end-method /** * Classifies the test set */ public void classifyTestSet(){ for(int i=0;i<testData.length;i++){ computeTestMembership(i,testData[i]); testPrediction[i]=computeClass(testMembership[i]); } } //end-method /** * Computes the class of a instance given its membership array * @param pertenence Membership array * * @return Class assigned (crisp) */ private int computeClass(double pertenence[]){ double max = Double.MIN_VALUE; int output=-1; for(int i=0; i< pertenence.length;i++){ if(max<pertenence[i]){ max=pertenence[i]; output=i; } } return output; } //end-method /** * Evaluates a instance to predict its class membership * * @param index Index of the instance in the test set * @param example Instance evaluated * */ private void computeTrainMembership(int index, double example[]) { double minDist[]; int nearestN[]; double dist; boolean stop; nearestN = new int[K]; minDist = new double[K]; for (int i=0; i<K; i++) { nearestN[i] = 0; minDist[i] = Double.MAX_VALUE; } //KNN Method starts here for (int i=0; i<trainData.length; i++) { if(i!=index){ //leave-one-out dist = Util.euclideanDistance(trainData[i],example); //see if it's nearer than our previous selected neighbors stop=false; for(int j=0;j<K && !stop;j++){ if (dist < minDist[j]) { for (int l = K - 1; l >= j+1; l--) { minDist[l] = minDist[l - 1]; nearestN[l] = nearestN[l - 1]; } minDist[j] = dist; nearestN[j] = i; stop=true; } } } } //compute membership for(int i = 0;i<K;i++){ for(int j=0;j<nClasses;j++){ referenceMembership [index][j]+= membership[nearestN[i]][j]; } } } //end-method /** * Evaluates a instance to predict its class membership * * @param index Index of the instance in the test set * @param example Instance evaluated * */ private void computeTestMembership(int index, double example[]) { double minDist[]; int nearestN[]; double dist; boolean stop; nearestN = new int[K]; minDist = new double[K]; for (int i=0; i<K; i++) { nearestN[i] = 0; minDist[i] = Double.MAX_VALUE; } //KNN Method starts here for (int i=0; i<trainData.length; i++) { dist = Util.euclideanDistance(trainData[i],example); //see if it's nearer than our previous selected neighbors stop=false; for(int j=0;j<K && !stop;j++){ if (dist < minDist[j]) { for (int l = K - 1; l >= j+1; l--) { minDist[l] = minDist[l - 1]; nearestN[l] = nearestN[l - 1]; } minDist[j] = dist; nearestN[j] = i; stop=true; } } } //compute membership for(int i = 0;i<K;i++){ for(int j=0;j<nClasses;j++){ testMembership [index][j]+= membership[nearestN[i]][j];; } } } //end-method /** * Reports the results obtained */ public void printReport(){ writeOutput(outFile[0], trainOutput, trainPrediction); writeOutput(outFile[1], testOutput, testPrediction); ReportTool.setResults(trainOutput,trainPrediction,testOutput,testPrediction,nClasses); ReportTool.printReport(); /* DecimalFormat nf4; nf4 = (DecimalFormat) DecimalFormat.getInstance(); nf4.setMaximumFractionDigits(4); nf4.setMinimumFractionDigits(0); DecimalFormatSymbols dfs = nf4.getDecimalFormatSymbols(); dfs.setDecimalSeparator('.'); nf4.setDecimalFormatSymbols(dfs); String text="\n\n====================\n"; text+="Prototypes:\n"; for(int i=0;i<centroids.length;i++){ if(nInstances[i]>0){ text+=(i+1)+": "; for(int j=0;j<inputAtt;j++){ text+= " "+nf4.format(centroids[i][j]); } text+="\n"; } } text+="\n\nReference set membership:\n"; for(int i=0;i<referenceData.length;i++){ text+=(i+1)+": "; for(int j=0;j<nClasses;j++){ text+="Class "+(j+1)+": "+nf4.format(membership[i][j])+"\t"; } text+="\n"; } /*text+="\n\nTest set membership:\n"; for(int i=0;i<testData.length;i++){ text+=(i+1)+": "; for(int j=0;j<nClasses;j++){ text+="Class "+(j+1)+": "+nf4.format(testMembership[i][j])+"\t"; } text+="\n"; } ReportTool.addToReport(text);*/ } //end-method } //end-class