/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Neural_Networks.gann; import java.io.FileNotFoundException; import java.io.IOException; import java.util.Vector; /** * <p> * Implementation of the Genetic Algorithm Neural Networks * </p> * @author Written by Nicolas Garcia Pedrajas (University of Cordoba) 27/02/2007 * @version 0.1 * @since JDK1.5 */ public class Gann { /** * <p> * Empty (default) constructor * </p> */ public Gann() { } /** * <p> * Main method * </p> * @param args Parameters file * @throws FileNotFoundException * @throws IOException */ public static void main(String[] args) throws FileNotFoundException, IOException { if (args.length <= 0) { System.err.println("No parameters file"); System.exit(1); } SetupParameters global = new SetupParameters(); global.LoadParameters(args[0]); OpenDataset train = new OpenDataset(); train.processClassifierDataset(global.train_file,true); OpenDataset test = null; OpenDataset validation = null; global.n_train_patterns = train.getndatos(); global.n_test_patterns = 0; if (global.test_data) { test = new OpenDataset(); test.processClassifierDataset(global.test_file,false); global.n_test_patterns = test.getndatos(); } global.n_val_patterns = 0; if (global.val_data) { validation = new OpenDataset(); validation.processClassifierDataset(global.val_file,false); global.n_val_patterns = validation.getndatos(); } // Assign data and parameters to internal variables // Number of inputs global.Ninputs = 0; for (int i = 0; i < train.getnentradas(); i++) { if (train.getTiposAt(i) == 0) { Vector in_values = train.getRangosVar(i); global.Ninputs += in_values.size(); } else { global.Ninputs++; } } // Number of outputs if (train.getTiposAt(train.getnentradas())!= 0) { global.Noutputs = train.getnsalidas(); } else { Vector out_values = train.getRangosVar(train.getnentradas()); global.Noutputs = out_values.size(); } global.n_train_patterns = train.getndatos(); Data data = new Data(global.Ninputs + global.Noutputs, global.n_train_patterns, global.n_test_patterns, global.n_val_patterns); global.Nhidden[global.Nhidden_layers] = global.Noutputs; Genesis.DatasetToArray(data.train, train); if (global.test_data) { Genesis.DatasetToArray(data.test, test); } if (global.val_data) { Genesis.DatasetToArray(data.validation, validation); } if (global.tipify_inputs == true) { double mean, sigma, sq_sum; /* Tipify input data. */ /* Scale input. */ for (int i = 0; i < global.Ninputs; i++) { /* Get the mean and variance. */ mean = sigma = sq_sum = 0.; for (int j = 0; j < global.n_train_patterns; j++) { mean += data.train[j][i]; sq_sum += data.train[j][i] * data.train[j][i]; } mean /= global.n_train_patterns; sigma = Math.sqrt(sq_sum / global.n_train_patterns - mean * mean); /* Tipify: z = (x - mean)/std. dev. */ /* If std. dev. is 0 do nothing. */ if (sigma > 0.000001) { for (int j = 0; j < global.n_train_patterns; j++) { data.train[j][i] = (data.train[j][i] - mean) / sigma; } for (int j = 0; j < global.n_test_patterns; j++) { data.test[j][i] = (data.test[j][i] - mean) / sigma; } } } } if (global.problem.compareToIgnoreCase("Classification") == 0) { for (int i = 0; i < global.n_train_patterns; i++) { for (int j = 0; j < global.Noutputs; j++) { if (data.train[i][j + global.Ninputs] == 0) { data.train[i][j + global.Ninputs] = -1.0; } } } if (global.test_data) { for (int i = 0; i < global.n_test_patterns; i++) { for (int j = 0; j < global.Noutputs; j++) { if (data.test[i][j + global.Ninputs] == 0) { data.test[i][j + global.Ninputs] = -1.0; } } } } if (global.val_data) { for (int i = 0; i < global.n_val_patterns; i++) { for (int j = 0; j < global.Noutputs; j++) { if (data.validation[i][j + global.Ninputs] == 0) { data.validation[i][j + global.Ninputs] = -1.0; } } } } } Population pop = new Population(global); Individual best = new Individual (10); best = pop.EvolvePopulation (global, data); ConnNetwork neural = new ConnNetwork (global); best.PhenotypeToNetwork(neural); if (global.save) { neural.SaveNetwork("network", false); } // neural.PrintWeights(); double res = neural.TestNetworkInClassification(global, data.train, global.n_train_patterns); System.out.println("Final network training accuracy: " + 100.0 * res); if (global.val_data == true) { res = neural.TestNetworkInClassification(global, data.validation, global.n_val_patterns); System.out.println("Final network validation accuracy: " + 100.0 * res); } if (global.test_data == true) { res = neural.TestNetworkInClassification(global, data.test, global.n_test_patterns); System.out.println("Final network test accuracy: " + 100.0 * res); } neural.SaveOutputFile(global.train_output, data.train, global.n_train_patterns, global.problem); if (global.test_data) { neural.SaveOutputFile(global.test_output, data.test, global.n_test_patterns, global.problem); } } }