/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
/**
* <p>
* @author Written by Jaume Bacardit (La Salle, Ram�n Llull University - Barcelona) 28/03/2004
* @author Modified by Xavi Sol� (La Salle, Ram�n Llull University - Barcelona) 23/12/2008
* @author Modified by Jose A. Saez Munoz (ETSIIT, Universidad de Granada - Granada) 10/09/10
*
* @version 1.1
* @since JDK1.2
* </p>
*/
package keel.Algorithms.Genetic_Rule_Learning.MPLCS;
import keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.*;
abstract public class Classifier {
/**
* <p>
* Base class for all classifiers (knowledge representations)
* </p>
*/
protected boolean isEvaluated;
protected boolean bloatControlDone;
protected double accuracy;
protected double fitness;
protected double exceptionsLength;
protected double theoryLength;
protected int numAliveRules;
protected int positionRuleMatch;
protected int numRules;
public abstract void initRandomClassifier();
public abstract int doMatch(InstanceWrapper ins);
public abstract int getNumRules();
public abstract void deleteRules(int[] whichRules);
public abstract Classifier[] crossoverClassifiers(Classifier _parent2);
public abstract void doMutation();
public abstract Classifier copy();
public abstract void printClassifier();
public boolean getIsEvaluated() {
return isEvaluated;
}
public void setIsEvaluated(boolean _isEvaluated) {
isEvaluated = _isEvaluated;
}
double getAccuracy() {
return accuracy;
}
public void setAccuracy(double _accuracy) {
accuracy = _accuracy;
}
public double getFitness() {
return fitness;
}
public void setFitness(double _fitness) {
fitness = _fitness;
}
public double getExceptionsLength() {
return exceptionsLength;
}
public void setExceptionsLength(double _exceptionsLength) {
exceptionsLength = _exceptionsLength;
}
public int getNumAliveRules() {
return numAliveRules;
}
public void setNumAliveRules(int _numAliveRules) {
numAliveRules = _numAliveRules;
}
public void resetPerformance() {
accuracy = 0;
fitness = 0;
numAliveRules = 0;
isEvaluated = false;
}
public void computePerformance() {
accuracy = PerformanceAgent.getAccuracy();
fitness = PerformanceAgent.getFitness(this);
numAliveRules = PerformanceAgent.getNumAliveRules();
isEvaluated = true;
}
/**
* positionRuleMatch contains the position within the classifier
* (e.g. the rule) that matched the last classified input
* instance
*/
public int getPositionRuleMatch() {
return positionRuleMatch;
}
public void setPositionRuleMatch(int _positionRuleMatch) {
positionRuleMatch = _positionRuleMatch;
}
public abstract double getLength();
public double getTheoryLength() {
return theoryLength;
}
public abstract double computeTheoryLength();
/**
* This function returns true if this individual is better than
* the the individual passed as a parameter. This comparison can
* be based on accuracy or a combination of accuracy and size
*/
public boolean compareToIndividual(Classifier ind) {
double l1 = getLength();
double l2 = ind.getLength();
double f1 = getFitness();
double f2 = ind.getFitness();
if (Parameters.doHierarchicalSelection) {
if (Math.abs(f1 - f2) <= Parameters.hierarchicalSelectionThreshold) {
if (l1 < l2) {
return true;
}
if (l1 > l2) {
return false;
}
}
}
if (Parameters.useMDL == false) {
if (f1 > f2) {
return true;
}
if (f1 < f2) {
return false;
}
if (Rand.getReal() < 0.5) {
return true;
}
return false;
}
if (f1 < f2) {
return true;
}
if (f1 > f2) {
return false;
}
if (Rand.getReal() < 0.5) {
return true;
}
return false;
}
public abstract int getNiche();
public abstract int getNumNiches();
public abstract int numSpecialStages();
public abstract void doSpecialStage(int stage);
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
public abstract void doLocalSearch();
public abstract void crossoverRSW(Classifier[] parents, int numParents);
}