/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Rule_Learning.Rules6; /** * <p>Title: Dataset</p> * * <p>Description: It contains the methods to read a Classification/Regression Dataset</p> * * * <p>Company: KEEL </p> * * @author Alberto Fernandez * @version 1.0 */ import java.io.IOException; import keel.Dataset.*; public class myDataset { public static final int REAL = 0; public static final int INTEGER = 1; public static final int NOMINAL = 2; private double[][] X = null; //examples array private boolean[][] missing = null; //possible missing values private int[] outputInteger = null; //output of the data-set as integer values private double[] outputReal = null; //output of the data-set as double values private String[] output = null; //output of the data-set as string values private double[] emax; //max value of an attribute private double[] emin; //min value of an attribute private int nData; // Number of examples private int nVars; // Numer of variables private int nInputs; // Number of inputs private int nClasses; // Number of outputs private InstanceSet IS; //The whole instance set private double stdev[], average[]; //standard deviation and average of each attribute private int instancesCl[]; /** * Init a new set of instances */ public myDataset() { IS = new InstanceSet(); } /** * Outputs an array of examples with their corresponding attribute values. * @return double[][] an array of examples with their corresponding attribute values */ public double[][] getX() { return X; } /** * Output a specific example * @param pos int position (id) of the example in the data-set * @return double[] the attributes of the given example */ public double[] getExample(int pos) { return X[pos]; } /** * Returns the output of the data-set as integer values * @return int[] an array of integer values corresponding to the output values of the dataset */ public int[] getOutputAsInteger() { int[] output = new int[outputInteger.length]; for (int i = 0; i < outputInteger.length; i++) { output[i] = outputInteger[i]; } return output; } /** * Returns the output of the data-set as real values * @return double[] an array of real values corresponding to the output values of the dataset */ public double[] getOutputAsReal() { double[] output = new double[outputReal.length]; for (int i = 0; i < outputReal.length; i++) { output[i] = outputInteger[i]; } return output; } /** * Returns the output of the data-set as nominal values * @return String[] an array of nomianl values corresponding to the output values of the dataset */ public String[] getOutputAsString() { String[] output = new String[this.output.length]; for (int i = 0; i < this.output.length; i++) { output[i] = this.output[i]; } return output; } /** * It returns the output value of the example "pos" * @param pos int the position (id) of the example * @return String a string containing the output value */ public String getOutputAsString(int pos) { return output[pos]; } /** * It returns the output value of the example "pos" * @param pos int the position (id) of the example * @return int an integer containing the output value */ public int getOutputAsInteger(int pos) { return outputInteger[pos]; } /** * It returns the output value of the example "pos" * @param pos int the position (id) of the example * @return double a real containing the output value */ public double getOutputAsReal(int pos) { return outputReal[pos]; } /** * It returns an array with the maximum values of the attributes * @return double[] an array with the maximum values of the attributes */ public double[] getemax() { return emax; } /** * It returns an array with the minimum values of the attributes * @return double[] an array with the minimum values of the attributes */ public double[] getemin() { return emin; } public double getMax(int variable) { return emax[variable]; } public double getMin(int variable) { return emin[variable]; } /** * It gets the size of the data-set * @return int the number of examples in the data-set */ public int getnData() { return nData; } /** * It gets the number of variables of the data-set (including the output) * @return int the number of variables of the data-set (including the output) */ public int getnVars() { return nVars; } /** * It gets the number of input attributes of the data-set * @return int the number of input attributes of the data-set */ public int getnInputs() { return nInputs; } /** * It gets the number of output attributes of the data-set (for example number of classes in classification) * @return int the number of different output values of the data-set */ public int getnClasses() { return nClasses; } /** * This function checks if the attribute value is missing * @param i int Example id * @param j int Variable id * @return boolean True is the value is missing, else it returns false */ public boolean isMissing(int i, int j) { return missing[i][j]; } /** * It reads the whole input data-set and it stores each example and its associated output value in * local arrays to ease their use. * @param datasetFile String name of the file containing the dataset * @param train boolean It must have the value "true" if we are reading the training data-set * @throws IOException If there ocurs any problem with the reading of the data-set */ public void readClassificationSet(String datasetFile, boolean train) throws IOException { try { // Load in memory a dataset that contains a classification problem IS.readSet(datasetFile, train); nData = IS.getNumInstances(); nInputs = Attributes.getInputNumAttributes(); nVars = nInputs + Attributes.getOutputNumAttributes(); // outputIntegerheck that there is only one output variable if (Attributes.getOutputNumAttributes() > 1) { System.out.println( "This algorithm can not process MIMO datasets"); System.out.println( "All outputs but the first one will be removed"); System.exit(1); } boolean noOutputs = false; if (Attributes.getOutputNumAttributes() < 1) { System.out.println( "This algorithm can not process datasets without outputs"); System.out.println("Zero-valued output generated"); noOutputs = true; System.exit(1); } // Initialice and fill our own tables X = new double[nData][nInputs]; missing = new boolean[nData][nInputs]; outputInteger = new int[nData]; outputReal = new double[nData]; output = new String[nData]; // Maximum and minimum of inputs emax = new double[nInputs]; emin = new double[nInputs]; // All values are casted into double/integer nClasses = 0; for (int i = 0; i < nData; i++) { Instance inst = IS.getInstance(i); for (int j = 0; j < nInputs; j++) { X[i][j] = IS.getInputNumericValue(i, j); //inst.getInputRealValues(j); missing[i][j] = inst.getInputMissingValues(j); if (X[i][j] > emax[j] || i == 0) { emax[j] = X[i][j]; } if (X[i][j] < emin[j] || i == 0) { emin[j] = X[i][j]; } } if (noOutputs) { outputInteger[i] = 0; output[i] = ""; } else { outputInteger[i] = (int) IS.getOutputNumericValue(i, 0); output[i] = IS.getOutputNominalValue(i, 0); } if (outputInteger[i] > nClasses) { nClasses = outputInteger[i]; } } nClasses++; System.out.println("Number of classes=" + nClasses); } catch (Exception e) { System.out.println("DBG: Exception in readSet"); e.printStackTrace(); } // computeStatistics(); this.computeInstancesPerClass(); } /** * It reads the whole input data-set and it stores each example and its associated output value in * local arrays to ease their use. * @param datasetFile String name of the file containing the dataset * @param train boolean It must have the value "true" if we are reading the training data-set * @throws IOException If there ocurs any problem with the reading of the data-set */ public void readRegressionSet(String datasetFile, boolean train) throws IOException { try { // Load in memory a dataset that contains a regression problem IS.readSet(datasetFile, train); nData = IS.getNumInstances(); nInputs = Attributes.getInputNumAttributes(); nVars = nInputs + Attributes.getOutputNumAttributes(); // outputIntegerheck that there is only one output variable if (Attributes.getOutputNumAttributes() > 1) { System.out.println( "This algorithm can not process MIMO datasets"); System.out.println( "All outputs but the first one will be removed"); System.exit(1); } boolean noOutputs = false; if (Attributes.getOutputNumAttributes() < 1) { System.out.println( "This algorithm can not process datasets without outputs"); System.out.println("Zero-valued output generated"); noOutputs = true; System.exit(1); } // Initialice and fill our own tables X = new double[nData][nInputs]; missing = new boolean[nData][nInputs]; outputInteger = new int[nData]; // Maximum and minimum of inputs emax = new double[nInputs]; emin = new double[nInputs]; // All values are casted into double/integer nClasses = 0; for (int i = 0; i < nData; i++) { Instance inst = IS.getInstance(i); for (int j = 0; j < nInputs; j++) { X[i][j] = IS.getInputNumericValue(i, j); missing[i][j] = inst.getInputMissingValues(j); if (X[i][j] > emax[j] || i == 0) { emax[j] = X[i][j]; } if (X[i][j] < emin[j] || i == 0) { emin[j] = X[i][j]; } } if (noOutputs) { outputReal[i] = outputInteger[i] = 0; } else { outputReal[i] = IS.getOutputNumericValue(i, 0); outputInteger[i] = (int) outputReal[i]; } } } catch (Exception e) { System.out.println("DBG: Exception in readSet"); e.printStackTrace(); } computeStatistics(); } /** * It copies the header of the dataset * @return String A string containing all the data-set information */ public String copyHeader() { String p = new String(""); p = "@relation " + Attributes.getRelationName() + "\n"; p += Attributes.getInputAttributesHeader(); p += Attributes.getOutputAttributesHeader(); p += Attributes.getInputHeader() + "\n"; p += Attributes.getOutputHeader() + "\n"; p += "@data\n"; return p; } /** * It transform the input space into the [0,1] range */ public void normalize() { int atts = this.getnInputs(); double maxs[] = new double[atts]; for (int j = 0; j < atts; j++) { maxs[j] = 1.0 / (emax[j] - emin[j]); } for (int i = 0; i < this.getnData(); i++) { for (int j = 0; j < atts; j++) { if (isMissing(i, j)) { ; //this process ignores missing values } else { X[i][j] = (X[i][j] - emin[j]) * maxs[j]; } } } } /** * It checks if the data-set has any real value * @return boolean True if it has some real values, else false. */ public boolean hasRealAttributes() { return Attributes.hasRealAttributes(); } public boolean hasNumericalAttributes() { return (Attributes.hasIntegerAttributes() || Attributes.hasRealAttributes()); } /** * It checks if the data-set has any missing value * @return boolean True if it has some missing values, else false. */ public boolean hasMissingAttributes() { return (this.sizeWithoutMissing() < this.getnData()); } /** * It return the size of the data-set without having account the missing values * @return int the size of the data-set without having account the missing values */ public int sizeWithoutMissing() { int tam = 0; for (int i = 0; i < nData; i++) { int j; for (j = 1; (j < nInputs) && (!isMissing(i, j)); j++) { ; } if (j == nInputs) { tam++; } } return tam; } public int size() { return nData; } /** * It computes the average and standard deviation of the input attributes */ private void computeStatistics() { stdev = new double[this.getnVars()]; average = new double[this.getnVars()]; for (int i = 0; i < this.getnInputs(); i++) { average[i] = 0; for (int j = 0; j < X[i].length; j++) { average[i] += X[i][j]; } average[i] /= X[i].length; } average[average.length-1] = 0; for (int j = 0; j < outputReal.length; j++) { average[average.length-1] += outputReal[j]; } average[average.length-1] /= outputReal.length; for (int i = 0; i < this.getnInputs(); i++) { double sum = 0; for (int j = 0; j < X[i].length; j++) { sum += (X[i][j] - average[i]) * (X[i][j] - average[i]); } sum /= X[i].length; stdev[i] = Math.sqrt(sum); } double sum = 0; for (int j = 0; j < outputReal.length; j++) { sum += (outputReal[j] - average[average.length-1]) * (outputReal[j] - average[average.length-1]); } sum /= outputReal.length; stdev[stdev.length-1] = Math.sqrt(sum); } /** * It return the standard deviation of an specific attribute * @param position int attribute id (position of the attribute) * @return double the standard deviation of the attribute */ public double stdDev(int position) { return stdev[position]; } /** * It return the average of an specific attribute * @param position int attribute id (position of the attribute) * @return double the average of the attribute */ public double average(int position) { return average[position]; } public void computeInstancesPerClass() { instancesCl = new int[nClasses]; for (int i = 0; i < this.getnData(); i++) { instancesCl[this.outputInteger[i]]++; } } public int numberInstances(int clas) { return instancesCl[clas]; } public int numberValues(int attribute) { return Attributes.getInputAttribute(attribute).getNumNominalValues(); } public String getOutputValue(int intValue) { return Attributes.getOutputAttribute(0).getNominalValue(intValue); } public int getTipo(int variable) { if (Attributes.getAttribute(variable).getType() == Attributes.getAttribute(0).INTEGER) { return this.INTEGER; } if (Attributes.getAttribute(variable).getType() == Attributes.getAttribute(0).REAL) { return this.REAL; } if (Attributes.getAttribute(variable).getType() == Attributes.getAttribute(0).NOMINAL) { return this.NOMINAL; } return 0; } /** * Devuelve el universo de discuros de las variables de entrada y salida * @return double[][] El rango minimo y maximo de cada variable */ public double [][] devuelveRangos(){ double [][] rangos = new double[this.getnVars()][2]; for (int i = 0; i < this.getnInputs(); i++){ if (Attributes.getInputAttribute(i).getNumNominalValues() > 0){ rangos[i][0] = 0; rangos[i][1] = Attributes.getInputAttribute(i).getNumNominalValues()-1; }else{ rangos[i][0] = Attributes.getInputAttribute(i).getMinAttribute(); rangos[i][1] = Attributes.getInputAttribute(i).getMaxAttribute(); } } rangos[this.getnVars()-1][0] = Attributes.getOutputAttribute(0).getMinAttribute(); rangos[this.getnVars()-1][1] = Attributes.getOutputAttribute(0).getMaxAttribute(); return rangos; } }