/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Thrift;
class BaseD {
Difuso[][] BaseDatos;
int n_variables, n_var_estado;
int[] n_etiquetas;
//int n_etiquetas;
public TipoIntervalo[] extremos;
//public TipoIntervalo[][] intervalos;
public BaseD(int MaxEtiquetas, int n_var, double[][] _extremos) {
int i, j;
n_variables = n_var;
n_var_estado = n_variables - 1;
//intervalos = new TipoIntervalo[n_variables][MaxEtiquetas];
BaseDatos = new Difuso[n_variables][MaxEtiquetas];
for (i = 0; i < n_variables; i++) {
BaseDatos[i] = new Difuso[MaxEtiquetas];
//intervalos[i] = new TipoIntervalo[MaxEtiquetas];
for (j = 0; j < MaxEtiquetas; j++) {
BaseDatos[i][j] = new Difuso();
//intervalos[i][j] = new TipoIntervalo();
}
}
n_etiquetas = new int[n_variables];
extremos = new TipoIntervalo[n_variables];
for (i = 0; i < n_variables; i++) {
extremos[i] = new TipoIntervalo();
extremos[i].min = _extremos[i][0];
extremos[i].max = _extremos[i][1];
n_etiquetas[i] = MaxEtiquetas;
}
}
/**
* Rounds the generated value for the semantics
* @param val valor a asignar
* @param tope tope valor maximo
* @return 0 si es muy peque�o, tope si es cercano a �ste y "valor" en otro caso
*/
public double Asigna(double val, double tope) {
if ((val > -1E-4) && (val < 1E-4)) {
return (0);
}
if ((val > tope - 1E-4) && (val < tope + 1E-4)) {
return (tope);
}
return (val);
}
/** Generates the semantics of the linguistic variables with triangular fuzzy sets and the mutation intervals to mutate */
public void Semantica() {
int var, etq;
double marca, valor;
//double[] punto = new double[3];
//double[] punto_medio = new double[2];
/* we generate the fuzzy partitions of the variables */
for (var = 0; var < n_variables; var++) {
marca = (extremos[var].max - extremos[var].min) /
((double) n_etiquetas[var] - 1);
for (etq = 0; etq < n_etiquetas[var]; etq++) {
valor = extremos[var].min + marca * (etq - 1);
BaseDatos[var][etq].x0 = Asigna(valor, extremos[var].max);
valor = extremos[var].min + marca * etq;
BaseDatos[var][etq].x1 = Asigna(valor, extremos[var].max);
BaseDatos[var][etq].x2 = BaseDatos[var][etq].x1;
valor = extremos[var].min + marca * (etq + 1);
BaseDatos[var][etq].x3 = Asigna(valor, extremos[var].max);
BaseDatos[var][etq].y = 1;
BaseDatos[var][etq].Nombre = "V" + (var + 1);
BaseDatos[var][etq].Etiqueta = "E" + (etq + 1);
}
}
}
public int getnLabels(int i) {
return this.n_etiquetas[i];
}
public Difuso getParticion(int i, int j) {
return (BaseDatos[i][j]).copia();
}
public double AntecedenteCubreEjemplo(int[] AntRegla, double[] ejem)
/* Calcula el grado de compatibilidad (Ri(ek)) de los antecedentes de la regla
con el ejemplo */
{
int i;
double[] grado_pertenencia;
double min;
grado_pertenencia = new double[n_var_estado];
for (i = 0; i < n_var_estado; i++) {
grado_pertenencia[i] = BaseR.Fuzzifica(ejem[i],
getParticion(i, AntRegla[i]));
}
min = 1.0;
for (i = 0; i < n_var_estado; i++) {
if (grado_pertenencia[i] < min) {
min = grado_pertenencia[i];
}
}
return (min);
}
public double getExtremoInf(int var) {
return extremos[var].min;
}
public double getExtremoSup(int var) {
return extremos[var].max;
}
public String printString() {
String cadena = new String("");
for (int i = 0; i < n_variables; i++) {
cadena += "\nVariable " + (i + 1) + ":\n";
for (int j = 0; j < n_etiquetas[i]; j++) {
cadena += " Etiqueta " + (j + 1) + ": (" + BaseDatos[i][j].x0 +
"," + BaseDatos[i][j].x1 + "," + BaseDatos[i][j].x3 +
")\n";
}
}
return cadena;
}
}