/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.*; import keel.Algorithms.Shared.Exceptions.*; import keel.Algorithms.Shared.Parsing.*; /** * * <p> * Methods for genetic individual management. * Need: The genotype and the type of fitness * </p> * * <p> * @author Written by Luciano S�nchez (University of Oviedo) 20/01/2004 * @author Modified by M.R. Su�rez (University of Oviedo) 18/12/2008 * @author Modified by Enrique A. de la Cal (University of Oviedo) 21/12/2008 * @version 1.0 * @since JDK1.5 * </p> */ public abstract class GeneticIndividual { public static final int STANDARD=OperatorIdent.GI_STANDARD; public static final int CUSTOM_CESAR=OperatorIdent.GI_CUSTOM_CESAR; public Genotype g; protected int fitnessType; /** * <p> * Constructor. Initialize the type of fitness * </p> * @param tf The type of fitness */ public GeneticIndividual(int tf) { fitnessType=tf; } /** * <p> * This abstract method calculates the classification error * </p> * @return The classification error * @throws invalidFitness Message if error */ public abstract double fitness() throws invalidFitness; /** * <p> * This abstract method clone a genetic individual * </p> * @return The cloned genetic individual */ public abstract GeneticIndividual clone(); /** * <p> * This abstract method sets parameters from a genotype * </p> */ public abstract void parametersFromGenotype(); /** * <p> * This abstract method implement the mutation operation * </p> * @param alpha Mutation index * @param idmutation Type of mutation * @throws invalidMutation Message if error */ public abstract void mutation(double alpha, int idmutation) throws invalidMutation; /** * <p> * This abstract method implement the cross operation * </p> * @param p2 The first genetic individual * @param p3 The second genetic individual * @param p4 The third genetic individual * @param idcross Type of cross * @throws invalidCrossover Message if error */ public abstract void crossover(GeneticIndividual p2, GeneticIndividual p3, GeneticIndividual p4,int idcross) throws invalidCrossover; /** * <p> * This abstract method calculate a local optimization * </p> * @param MAXITER Maximun iterations * @param idoptimization Type of optimization * @throws invalidOptim Message if error */ public abstract void localOptimization(int MAXITER, int idoptimization) throws invalidOptim; /** * <p> * This method is for debug * </p> */ public abstract void debug(); /** * <p> * This abstract method is for random generation * </p> */ public abstract void Random(); }