/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
/**
* <p>
* @author Written by Jaume Bacardit (La Salle, Ram�n Llull University - Barcelona) 28/03/2004
* @author Modified by Xavi Sol� (La Salle, Ram�n Llull University - Barcelona) 23/12/2008
* @version 1.1
* @since JDK1.2
* </p>
*/
package keel.Algorithms.Genetic_Rule_Learning.MPLCS;
import keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.*;
public class Globals_MDL {
static double theoryWeight;
static boolean activated = false;
static boolean fixedWeight = false;
public static boolean newIteration(int iteration, Classifier[]pop) {
if (!Parameters.useMDL)
return false;
Classifier ind = PopulationWrapper.getBest(pop);
boolean updateWeight = false;
if (iteration == Parameters.iterationMDL) {
LogManager.println("Iteration " + iteration +
" :MDL fitness activated");
activated = true;
double error = ind.getExceptionsLength();
double theoryLength = ind.getTheoryLength();
theoryLength *= Parameters.numClasses;
theoryLength /= ind.getNumAliveRules();
theoryWeight =
(Parameters.initialTheoryLengthRatio /
(1.0 - Parameters.initialTheoryLengthRatio))
* (error / theoryLength);
updateWeight = true;
}
if (activated && !fixedWeight &&
Statistics.last10IterationsAccuracyAverage == 1.0) {
fixedWeight = true;
}
if (activated && !fixedWeight) {
if (ind.getAccuracy() != 1.0) {
if (Statistics.getIterationsSinceBest() ==
10) {
theoryWeight *=
Parameters.weightRelaxFactor;
updateWeight = true;
}
}
}
if (updateWeight) {
Statistics.resetBestStats();
return true;
}
return false;
}
public static double mdlFitness(Classifier ind) {
double fit = 0;
ind.computeTheoryLength();
if (activated) {
fit = ind.getTheoryLength() * theoryWeight;
}
double exceptionsLength =
105.00 - PerformanceAgent.getAccuracy() * 100.0;
ind.setExceptionsLength(exceptionsLength);
fit += exceptionsLength;
return fit;
}
}