/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Jaume Bacardit (La Salle, Ram�n Llull University - Barcelona) 28/03/2004 * @author Modified by Xavi Sol� (La Salle, Ram�n Llull University - Barcelona) 23/12/2008 * @version 1.1 * @since JDK1.2 * </p> */ package keel.Algorithms.Genetic_Rule_Learning.MPLCS; import keel.Algorithms.Genetic_Rule_Learning.MPLCS.Assistant.Globals.*; public class Globals_MDL { static double theoryWeight; static boolean activated = false; static boolean fixedWeight = false; public static boolean newIteration(int iteration, Classifier[]pop) { if (!Parameters.useMDL) return false; Classifier ind = PopulationWrapper.getBest(pop); boolean updateWeight = false; if (iteration == Parameters.iterationMDL) { LogManager.println("Iteration " + iteration + " :MDL fitness activated"); activated = true; double error = ind.getExceptionsLength(); double theoryLength = ind.getTheoryLength(); theoryLength *= Parameters.numClasses; theoryLength /= ind.getNumAliveRules(); theoryWeight = (Parameters.initialTheoryLengthRatio / (1.0 - Parameters.initialTheoryLengthRatio)) * (error / theoryLength); updateWeight = true; } if (activated && !fixedWeight && Statistics.last10IterationsAccuracyAverage == 1.0) { fixedWeight = true; } if (activated && !fixedWeight) { if (ind.getAccuracy() != 1.0) { if (Statistics.getIterationsSinceBest() == 10) { theoryWeight *= Parameters.weightRelaxFactor; updateWeight = true; } } } if (updateWeight) { Statistics.resetBestStats(); return true; } return false; } public static double mdlFitness(Classifier ind) { double fit = 0; ind.computeTheoryLength(); if (activated) { fit = ind.getTheoryLength() * theoryWeight; } double exceptionsLength = 105.00 - PerformanceAgent.getAccuracy() * 100.0; ind.setExceptionsLength(exceptionsLength); fit += exceptionsLength; return fit; } }