/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * * File: SGA.java * * Steady-State Genetic algorithm for Instance Selection. * * @author Written by Salvador Garc�a (University of Granada) 20/07/2004 * @version 0.1 * @since JDK1.5 * */ package keel.Algorithms.Preprocess.Instance_Selection.SGA; import keel.Algorithms.Preprocess.Basic.*; import org.core.*; import java.util.StringTokenizer; import java.util.Arrays; public class SGA extends Metodo { /*Own parameters of the algorithm*/ private long semilla; private double pMutacion1to0; private double pMutacion0to1; private double pCruce; private int tamPoblacion; private int nEval; private double alfa; private boolean torneo; private int kNeigh; /** * Default builder. Construct the algoritm by using the superclass builder. * */ public SGA (String ficheroScript) { super (ficheroScript); }//end-method /** * Executes the algorithm */ public void ejecutar () { int i, j, l; int nClases; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; int nSel = 0; Cromosoma poblacion[]; int ev = 0; double prob[]; double NUmax = 1.5; double NUmin = 0.5; //used for lineal ranking double aux; double pos1, pos2; int sel1, sel2, comp1, comp2; Cromosoma newPob[]; long tiempo = System.currentTimeMillis(); /*Getting the number of different clases*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; /*Random inicialization of the population*/ Randomize.setSeed (semilla); poblacion = new Cromosoma[tamPoblacion]; for (i=0; i<tamPoblacion; i++) poblacion[i] = new Cromosoma (datosTrain.length); /*Initial evaluation of the population*/ for (i=0; i<tamPoblacion; i++) poblacion[i].evalua(datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, alfa, kNeigh, nClases, distanceEu); if (torneo) { while (ev < nEval) { newPob = new Cromosoma[2]; /*Binary tournament selection*/ comp1 = Randomize.Randint(0,tamPoblacion-1); do { comp2 = Randomize.Randint(0,tamPoblacion-1); } while (comp2 == comp1); if (poblacion[comp1].getCalidad() > poblacion[comp2].getCalidad()) sel1 = comp1; else sel1 = comp2; comp1 = Randomize.Randint(0,tamPoblacion-1); do { comp2 = Randomize.Randint(0,tamPoblacion-1); } while (comp2 == comp1); if (poblacion[comp1].getCalidad() > poblacion[comp2].getCalidad()) sel2 = comp1; else sel2 = comp2; if (Randomize.Rand() < pCruce) { //there is cross crucePMX (poblacion, newPob, sel1, sel2); } else { //there is not cross newPob[0] = new Cromosoma (datosTrain.length, poblacion[sel1]); newPob[1] = new Cromosoma (datosTrain.length, poblacion[sel2]); } /*Mutation of the cromosomes*/ for (i=0; i<2; i++) newPob[i].mutacion(pMutacion1to0, pMutacion0to1); /*Evaluation of the population*/ for (i=0; i<2; i++) if (!(newPob[i].estaEvaluado())) { newPob[i].evalua(datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, alfa, kNeigh, nClases, distanceEu); ev++; } /*Replace the two worst*/ Arrays.sort(poblacion); poblacion[tamPoblacion-2] = new Cromosoma (datosTrain.length, newPob[0]); poblacion[tamPoblacion-1] = new Cromosoma (datosTrain.length, newPob[1]); } } else { /*Get the probabilities of lineal ranking in case of not use binary tournament*/ prob = new double[tamPoblacion]; for (i=0; i<tamPoblacion; i++) { aux= (double)(NUmax-NUmin)*((double)i/(tamPoblacion-1)); prob[i]=(double)(1.0/(tamPoblacion)) * (NUmax-aux); } for (i=1; i<tamPoblacion; i++) prob[i] = prob[i] + prob[i-1]; while (ev < nEval) { /*Sort the population by quality criterion*/ Arrays.sort(poblacion); newPob = new Cromosoma[2]; pos1 = Randomize.Rand(); pos2 = Randomize.Rand(); for (j=0; j<tamPoblacion && prob[j]<pos1; j++); sel1 = j; for (j=0; j<tamPoblacion && prob[j]<pos2; j++); sel2 = j; if (Randomize.Rand() < pCruce) { //there is cross crucePMX (poblacion, newPob, sel1, sel2); } else { //there is not cross newPob[0] = new Cromosoma (datosTrain.length, poblacion[sel1]); newPob[1] = new Cromosoma (datosTrain.length, poblacion[sel2]); } /*Mutation of the cromosomes*/ for (i=0; i<2; i++) newPob[i].mutacion(pMutacion1to0, pMutacion0to1); /*Evaluation of the population*/ for (i=0; i<2; i++) if (!(newPob[i].estaEvaluado())) { newPob[i].evalua(datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, alfa, kNeigh, nClases, distanceEu); ev++; } /*Replace the two worst*/ poblacion[tamPoblacion-2] = new Cromosoma (datosTrain.length, newPob[0]); poblacion[tamPoblacion-1] = new Cromosoma (datosTrain.length, newPob[1]); } } nSel = poblacion[0].genesActivos(); /*Building of S set from the best cromosome obtained*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (i=0, l=0; i<datosTrain.length; i++) { if (poblacion[0].getGen(i)) { //the instance must be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[i][j]; conjR[l][j] = realTrain[i][j]; conjN[l][j] = nominalTrain[i][j]; conjM[l][j] = nulosTrain[i][j]; } clasesS[l] = clasesTrain[i]; l++; } } System.out.println("SGA "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); }//end-method /** * PMX cross operator * * @param poblacion Population of chromosomes * @param newPob New population * @param sel1 First parent * @param sel2 Second parent */ public void crucePMX (Cromosoma poblacion[], Cromosoma newPob[], int sel1, int sel2) { int e1, e2; int limSup, limInf; int i; boolean temp[]; temp = new boolean[datosTrain.length]; e1 = Randomize.Randint (0, datosTrain.length-1); e2 = Randomize.Randint (0, datosTrain.length-1); if (e1 > e2) { limSup = e1; limInf = e2; } else { limSup = e2; limInf = e1; } for (i=0; i<datosTrain.length; i++) { if (i < limInf || i > limSup) temp[i] = poblacion[sel1].getGen(i); else temp[i] = poblacion[sel2].getGen(i); } newPob[0] = new Cromosoma (temp); for (i=0; i<datosTrain.length; i++) { if (i < limInf || i > limSup) temp[i] = poblacion[sel2].getGen(i); else temp[i] = poblacion[sel1].getGen(i); } newPob[1] = new Cromosoma (temp); }//end-method /** * Reads configuration script, and extracts its contents. * * @param ficheroScript Name of the configuration script * */ public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the seed*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); semilla = Long.parseLong(tokens.nextToken().substring(1)); /*Getting the mutation and cross probability*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); pMutacion1to0 = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); pMutacion0to1 = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); pCruce = Double.parseDouble(tokens.nextToken().substring(1)); /*Getting the size of the population and number of evaluations*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); tamPoblacion = Integer.parseInt(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); nEval = Integer.parseInt(tokens.nextToken().substring(1)); /*Getting the alfa equilibrate factor*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); alfa = Double.parseDouble(tokens.nextToken().substring(1)); /*Getting the type of selection*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); token = token.substring(1); if (token.equalsIgnoreCase("binary_tournament")) torneo = true; else torneo = false; linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); kNeigh = Integer.parseInt(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; }//end-method }//end-class