/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierFuzzyMaxLogitBoost; import keel.Algorithms.Shared.Parsing.*; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Boosting.*; import java.io.*; import org.core.*; /** * * <p> * ClassifierFuzzyMaxLogitBoost generates a Fuzzy Rule Based System classifier using * the Max Logit Boosting algorithm. This class acts as an interface for the FB (Fuzzy * Boosting) class with the KEEL environment. * * Detailed in * M.J. del Jesus, F. Hoffmann, L. Junco, L. S�nchez. Induction of Fuzzy-Rule- * Based Classifiers With Evolutionary Boosting Algorithms. IEEE Transactions on * Fuzzy Systems 12:3 (2004) 296-308. * </p> * * <p> * @author Written by Luciano Sanchez (University of Oviedo) 21/07/2008 * @author Modified by J.R. Villar (University of Oviedo) 19/12/2008 * @version 1.0 * @since JDK1.4 * </p> */ public class ClassifierFuzzyMaxLogitBoost { //The Randomize object used in this class static Randomize rand; //The maximum number of Fuzzy Rules to be learned. final static int MAXFUZZYRULES=1000; /** * <p> * This private static method extract the dataset and the method's parameters * from the KEEL environment, learn the FRBS classifier using the chosen boosting * algorithm and print out the results with the validation dataset. * </p> * @param opt integer with the chosen boosting learning method: * 0 fuzzy adaboost algorithm * 1 fuzzy logit bit boosting algorithm * 2 fuzzy adaboost algorithm with max-min norms * @param tty unused boolean parameter, kept for compatibility * @param pc ProcessConfig object to obtain the train and test datasets * and the method's parameters. */ private static void fuzzyBoosting(int opt,boolean tty, ProcessConfig pc) { try { int defaultNumberInputPartitions=0; int numberOfCrossovers=0; ProcessDataset pd=new ProcessDataset(); String readALine; readALine=(String)pc.parInputData.get(ProcessConfig.IndexTrain); if (pc.parNewFormat) pd.processClassifierDataset(readALine,true); else pd.oldClusteringProcess(readALine); int nData=pd.getNdata(); // Number of examples int nVariables=pd.getNvariables(); // Number of variables int nInputs=pd.getNinputs(); // Number of inputs int nClasses=pd.getNclasses(); double[][] X = pd.getX(); // Input data int[] C = pd.getC(); // Output data int [] Ct=new int[C.length]; pd.showDatasetStatistics(); double[] inputMaximum = pd.getImaximum(); // Maximum and minimum for input data double[] inputMinimum = pd.getIminimum(); double outputMaximum = pd.getOmaximum(); // Maximum and minimum for output data double outputMinimum = pd.getOminimum(); int[] nInputPartitions=new int[nInputs]; // Terminos en cada particion linguistica int nOutputPartitions; // "R" module compatibility double ytrain[][]=new double[X.length][nClasses]; for (int i=0;i<ytrain.length;i++) ytrain[i][C[i]]=1; int p=0; double lintrain[]=new double[nData*nInputs]; for (int i=0;i<nData;i++) for (int j=0;j<nInputs;j++) lintrain[p++]=X[i][j]; p=0; double linytrain[]=new double[nData*nClasses]; for (int j=0;j<nClasses;j++) for (int i=0;i<nData;i++) linytrain[p++]=ytrain[i][j]; FB fb=new FB(); int nRules; nRules=pc.parRuleNumber; int nlabels; nlabels=pc.parPartitionLabelNum; // Antes: // double []ruleBase=new double[2000]; // Ahora: int ruleBaseSize=(nlabels+1)*nInputs+nRules+ nRules*(nInputs+nClasses); double []ruleBase=new double[ruleBaseSize]; //2000]; double numFails=0; fb.fuzzycreavacio(nInputs,nClasses,nlabels,lintrain,linytrain,ruleBase,rand); int limit=0; if (nClasses==2) limit=1; else limit=nClasses; double fit[]=new double[1]; for (int r=0;r<nRules;r++) { numFails=0; switch (opt) { case 1: fb.fadaboostinc(nInputs,nClasses,lintrain,linytrain,ruleBase); break; case 2: fb.flogitboostinc(nInputs,nClasses,lintrain,linytrain,ruleBase,false); break; case 3: fb.fadaboostincmaxmin(nInputs,nClasses,lintrain,linytrain,ruleBase,fit); break; } for (int i=0;i<X.length;i++) { double [] segs; if (opt==1 || opt==2) segs=fb.fuzzyclasifica(X[i],nClasses,ruleBase); else segs=fb.fuzzyclasificamaxmin(X[i],nClasses,ruleBase); int ac=fb.argmax(segs); if (ac!=(int)C[i]) { numFails++; } else { } Ct[i]=ac; } } System.out.println("Train: ="+numFails/X.length); pc.trainingResults(C,Ct); // Error test ProcessDataset pdt = new ProcessDataset(); int nTest,nTestInputs,nTestVariables; readALine=(String)pc.parInputData.get(ProcessConfig.IndexTest); if (pc.parNewFormat) pdt.processClassifierDataset(readALine,false); else pdt.oldClusteringProcess(readALine); nTest = pdt.getNdata(); nTestVariables = pdt.getNvariables(); nTestInputs = pdt.getNinputs(); pdt.showDatasetStatistics(); if (nTestInputs!=nInputs) throw new IOException("Test file IOERR"); X=pdt.getX(); C=pdt.getC(); int[] Co=new int[C.length]; nData=X.length; // R module compatibility ytrain=new double[X.length][nClasses]; for (int i=0;i<ytrain.length;i++) ytrain[i][C[i]]=1; p=0; lintrain=new double[nData*nInputs]; for (int i=0;i<nData;i++) for (int j=0;j<nInputs;j++) lintrain[p++]=X[i][j]; p=0; linytrain=new double[nData*nClasses]; for (int j=0;j<nClasses;j++) for (int i=0;i<nData;i++) linytrain[p++]=ytrain[i][j]; numFails=0; for (int i=0;i<X.length;i++) { double [] segs; if (opt==1 || opt==2) segs=fb.fuzzyclasifica(X[i],nClasses,ruleBase); else segs=fb.fuzzyclasificamaxmin(X[i],nClasses,ruleBase); int ac=fb.argmax(segs); Co[i]=ac; if (ac!=(int)C[i]) { numFails++; } else { } } System.out.println("Test: ="+numFails/X.length); pc.results(C,Co); } catch(FileNotFoundException e) { System.err.println(e+" Input file not found"); } catch(IOException e) { System.err.println(e+" Read Error"); } } /** * <p> * This public static method runs the algorithm that this class concerns with. * </p> * @param args Array of strings to sent parameters to the main program. The * path of the algorithm's parameters file must be given. */ public static void main(String args[]) { boolean tty=false; ProcessConfig pc=new ProcessConfig(); System.out.println("Reading configuration file: "+args[0]); if (pc.fileProcess(args[0])<0) return; int algo=pc.parAlgorithmType; rand=new Randomize(); rand.setSeed(pc.parSeed); ClassifierFuzzyMaxLogitBoost pi=new ClassifierFuzzyMaxLogitBoost(); pi.fuzzyBoosting(3,tty,pc); } }