/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal; /** * <p> * @author Written by Alvaro Lopez * @version 1.0 * @since JDK1.6 * </p> */ import java.util.ArrayList; public class FuzzyDataset { /** * <p> * It represents a fuzzy dataset which is based on the original dataset and handles fuzzy transactions * </p> */ private myDataset dataset; private ArrayList<FuzzyAttribute> fuzzyAttributes; private double[][][] fuzzyTransactions; private int[] numFuzzyRegions; /** * It creates a new fuzzy dataset by setting up its properties * @param dataset The instance of the dataset for dealing with its records * @param fuzzyAttributes The fuzzy attributes that are previously built */ public FuzzyDataset(myDataset dataset, ArrayList<FuzzyAttribute> fuzzyAttributes) { this.dataset = dataset; this.fuzzyAttributes = fuzzyAttributes; this.createFuzzyTransactions(); this.setNumFuzzyRegions(); } private void createFuzzyTransactions() { int trans, attr, id_attr; double[][] true_transactions; this.fuzzyTransactions = new double[ this.dataset.getnTrans() ][ this.fuzzyAttributes.size() ][]; true_transactions = this.dataset.getTrueTransactions(); for (trans=0; trans < this.fuzzyTransactions.length; trans++) { for (attr=0; attr < this.fuzzyAttributes.size(); attr++) { id_attr = this.fuzzyAttributes.get(attr).getIdAttr(); this.transformIntoFuzzySet(trans, attr, true_transactions[trans][id_attr]); } } } public int getAttrib(int attr) { return (this.fuzzyAttributes.get(attr).getIdAttr()); } private void transformIntoFuzzySet(int trans, int attr, double true_value) { int region; FuzzyRegion[] fuzzy_regions; fuzzy_regions = this.fuzzyAttributes.get(attr).getFuzzyRegions(); this.fuzzyTransactions[trans][attr] = new double[ fuzzy_regions.length ]; for (region=0; region < fuzzy_regions.length; region++) { this.fuzzyTransactions[trans][attr][region] = fuzzy_regions[region].getFuzzyValue(true_value); } } private void setNumFuzzyRegions() { this.numFuzzyRegions = new int[ this.fuzzyAttributes.size() ]; for (int i=0; i < this.numFuzzyRegions.length; i++) this.numFuzzyRegions[i] = this.fuzzyAttributes.get(i).getNumberOfFuzzyRegions(); } /** * It returns the membership degrees associated with each fuzzy attribute and for all the transactions * @return A 3-D array containing the membership degrees associated with each fuzzy attribute and for all the transactions */ public double[][][] getFuzzyTransactions() { return this.fuzzyTransactions; } /** * It returns the number of fuzzy attributes composing a fuzzy dataset * @return A value representing the number of fuzzy attributes composing a fuzzy dataset */ public int getNumberOfFuzzyAttributes() { return ( this.fuzzyAttributes.size() ); } /** * It returns the number of fuzzy regions of each involved fuzzy attributes * @return An array containing the number of fuzzy regions of each involved fuzzy attributes */ public int[] getNumberOfFuzzyRegions() { return this.numFuzzyRegions; } }