/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Albert Orriols (La Salle, Ram�n Llull University - Barcelona) 28/03/2004 * @author Modified by Xavi Sol� (La Salle, Ram�n Llull University - Barcelona) 03/12/2008 * @version 1.1 * @since JDK1.2 * </p> */ package keel.Algorithms.Genetic_Rule_Learning.XCS; import keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config; import java.lang.*; import java.io.*; import java.util.*; public class TournamentSelection implements Selection { /** * <p> * This class implements the tournament selection method. * </p> */ /////////////////////////////////////// // attributes /** * <p> * It is the first set of the population chosen by tournament. * </p> * */ private Classifier [] set1; /** * <p> * It is the second set of the population chosen by tournament. * </p> * */ private Classifier [] set2; /** * <p> * It is the set from which the selection has to be made. * </p> * */ private int activeSet = 1; /** * <p> * It is the size of the tournament. * */ private int tournamentSize; /////////////////////////////////////// // operations /** * <p> * Creates a TournamentSelection object * </p> * */ public TournamentSelection() { activeSet = 1; tournamentSize = 0; set1 = null; set2 = null; } // end TournamentSelection /** * <p> * Initializes the tournament selection. It initializes two sets of * classifiers to make the tournament selection with them. Their size * is a fraction of the action set size. * </p> * <p> * * @param pop is the population. * </p> */ public void init(Population pop) { int aleat = 0; int aSetSize = pop.getMacroClSum(); tournamentSize = (int)Config.tournamentSize * aSetSize; set1 = new Classifier [tournamentSize]; for (int i = 0; i<tournamentSize; i++){ aleat = (int) (Config.rand() * (double)aSetSize); if (aleat == aSetSize) aleat --; set1[i] = pop.getClassifier(aleat); } set2 = new Classifier[tournamentSize]; for (int i = 0; i<tournamentSize; i++){ aleat = (int) (Config.rand() * (double)aSetSize); if (aleat == aSetSize) aleat --; set2[i] = pop.getClassifier(aleat); } activeSet = 1; } // end init /** * <p> * Applies the tournament selection. * </p> * <p> * @param pop is the population. * </p> * <p> * @return a Classifier with the selected classifier * </p> */ public Classifier makeSelection(Population pop) { double maxFitness = -1000; int pos = -1; for (int i=0; i<tournamentSize; i++){ if (activeSet == 1){ if (set1[i].getFitness() > maxFitness){ pos = i; maxFitness = set1[i].getFitness(); } } else{ if (set2[i].getFitness() > maxFitness){ pos = i; maxFitness = set2[i].getFitness(); } } } if (pos >= 0){ if (activeSet == 1){ activeSet = 2; return set1[pos]; } else{ activeSet = 1; return set2[pos]; } } else{ activeSet = activeSet%2 +1; return null; } } // end makeSelection } // end TournamentSelection