/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.Neural_Networks.NNEP_Common.problem;
import keel.Algorithms.Neural_Networks.NNEP_Common.data.DoubleTransposedDataSet;
import net.sf.jclec.util.range.Interval;
/**
* <p>
* @author Written by Pedro Antonio Gutierrez Penya, Aaron Ruiz Mora (University of Cordoba) 17/07/2007
* @version 0.1
* @since JDK1.5
* </p>
*/
public interface IProblem{
/**
* <p>
* Represents a problem with training and test data
* </p>
*/
/////////////////////////////////////////////////////////////////
// -------------------------------------------- Managing datasets
/////////////////////////////////////////////////////////////////
/**
* <p>
* Returns the train data associated to this problem
* </p>
* @return DataSet Train data set
*/
public DoubleTransposedDataSet getTrainData();
/**
* <p>
* Returns the test data associated to this problem
* </p>
* @return DataSet Test data set
*/
public DoubleTransposedDataSet getTestData();
/**
* <p>
* Returns a boolean value indicating if the DataSets are going to be normalized
* </p>
* @return true if DataSets going to be normalized
*/
public boolean isDataNormalized();
/**
* <p>
* Returns a boolean value indicating if the DataSets are going to be log
* transformated
* </p>
* @return true if DataSets going to be transformated
*/
public boolean isLogTransformation();
/**
* <p>
* Returns the input interval of normalized data
* </p>
* @return Interval Input normalization interval
*/
public Interval getInputInterval();
/**
* <p>
* Returns the input interval of normalized data
* </p>
* @return Interval Output normalization interval
*/
public Interval getOutputInterval();
}