/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Instance_Generation.BasicMethods; import keel.Algorithms.Instance_Generation.Basic.PrototypeSet; import keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator; import keel.Algorithms.Instance_Generation.Basic.Prototype; import keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm; import keel.Algorithms.Instance_Generation.*; import java.util.*; import keel.Algorithms.Instance_Generation.utilities.*; import keel.Algorithms.Instance_Generation.utilities.KNN.*; import org.core.*; /** * Implements the reduction of the prototype set, making a centroid for each class. * That is, it adds average prototypes of each class to the reduced set. * @author diegoj */ public class AVG extends PrototypeGenerator { /** * Constructs the AVG * @param _trainingDataSet Original training prototypes set. */ public AVG(PrototypeSet _trainingDataSet) { super(_trainingDataSet); algorithmName="AVG"; } /** * Constructs the AVG * @param _trainingDataSet Original training prototypes set. * @param param Parameters of the algorithm (random seed). */ public AVG(PrototypeSet _trainingDataSet, Parameters param) { super(_trainingDataSet, param); algorithmName="AVG"; } /** * Reduces the set by adding centroid prototype of each class to reduced set. * @return Reduced set of centroids of classes of the original training set. */ @Override public PrototypeSet reduceSet() { PrototypeSet reduced = new PrototypeSet(); ArrayList<Double> classes = trainingDataSet.nonVoidClasses(); //For each class in the training data set, calculate the centroid of //its class-partition and adds it to the reduced set. for(double c : classes) { PrototypeSet Tc = trainingDataSet.getFromClass(c); //Debug.errorln("Number of ps of class " + c + ": " + Tc.size()); Prototype centroid_c =Tc.avg(); centroid_c.setLabel(c); reduced.add(centroid_c); } return reduced; } /** * General main for all the prototoype generators * Arguments: * 0: Filename with the training data set to be condensed. * 1: Filename wich will contain the test data set * @param args Arguments of the main function. */ public static void main(String[] args) { Parameters.setUse("AVG", ""); Parameters.assertBasicArgs(args); PrototypeSet training = PrototypeGenerationAlgorithm.readPrototypeSet(args[0]); PrototypeSet test = PrototypeGenerationAlgorithm.readPrototypeSet(args[1]); AVG generator = new AVG(training); PrototypeSet resultingSet = generator.execute(); int accuracy1NN = KNN.classficationAccuracy(resultingSet, test); generator.showResultsOfAccuracy(Parameters.getFileName(), accuracy1NN, test); } }//end-of-class