/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Discretizers.UCPD; import org.core.Randomize; /** * <p> * This class helps managing a sampling without replacement process * </p> * * @author Written by Jose A. Saez (University of Granada), 21/12/2009 * @version 1.0 * @since JDK1.6 */ public class Sampling { int maxSize; // total number of elements int num; // actual number of elements int []sample; // actual elements //****************************************************************************************************** /** * <p> * Class constructor * </p> * @param _maxSize number of elements */ public Sampling(int _maxSize){ maxSize = _maxSize; sample = new int[maxSize]; initSampling(); } //****************************************************************************************************** /** * <p> * It initializes the sampling * </p> */ void initSampling(){ for(int i = 0; i < maxSize; i++) sample[i] = i; num = maxSize; } //****************************************************************************************************** /** * <p> * It returns one value of the sampling * </p> * @return the sampled value */ public int getSample(){ int pos = Randomize.Randint(0, num); int value = sample[pos]; sample[pos] = sample[num-1]; num--; if(num == 0) initSampling(); return value; } }