/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Jaume Bacardit (La Salle, Ram�n Llull University - Barcelona) 28/03/2004 * @author Modified by Xavi Sol� (La Salle, Ram�n Llull University - Barcelona) 23/12/2008 * @version 1.1 * @since JDK1.2 * </p> */ package keel.Algorithms.Genetic_Rule_Learning.GAssist; import keel.Algorithms.Genetic_Rule_Learning.Globals.*; public class ProbabilityManagement { public final static int LINEAR = 0; public final static int SIGMOIDAL = 1; double probStart; double probEnd; double probLength; int evolMode; double currentProb; double sigmaYLength; double sigmaYBase; double sigmaXOffset; double beta; public ProbabilityManagement(double start, double end, int mode) { probStart = start; probEnd = end; evolMode = mode; if (mode == LINEAR) { probLength = end - start; currentProb = start; } else { sigmaYLength = end - start; sigmaYBase = start; sigmaXOffset = 0.5; beta = -10; } } public double incStep() { if (evolMode == LINEAR) { currentProb = Parameters.percentageOfLearning * probLength + probStart; } else { currentProb = sigmaYLength / (1 + Math.exp(beta * (Parameters.percentageOfLearning - 0.5))) + sigmaYBase; } return currentProb; } }