/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.Associative_Classification.ClassifierFuzzyFARCHD;
/**
* <p>Title: Itemset</p>
* <p>Description: This class contains the representation of a itemset</p>
* <p>Copyright: Copyright KEEL (c) 2007</p>
* <p>Company: KEEL </p>
* @author Jesus Alcal� (University of Granada) 09/02/2011
* @version 1.0
* @since JDK1.6
*/
import java.util.*;
public class Itemset {
ArrayList<Item> itemset;
int clas;
double support, supportRule;
public Itemset() {
}
/**
* <p>
* Builder
* </p>
* @param clas Class
* @return Return a itemset for the class clas
*/
public Itemset(int clas) {
this.itemset = new ArrayList<Item> ();
this.clas = clas;
this.support = 0;
this.supportRule = 0;
}
/**
* <p>
* Clone
* </p>
* @return Return a copy of the itemset
*/
public Itemset clone() {
Itemset d = new Itemset(this.clas);
for (int i=0; i < this.itemset.size(); i++) d.add((itemset.get(i)).clone());
d.clas = this.clas;
d.support = this.support;
d.supportRule = this.supportRule;
return (d);
}
public void add (Item item) {
this.itemset.add(item);
}
public Item get (int pos) {
return (this.itemset.get(pos));
}
public Item remove (int pos) {
return (this.itemset.remove(pos));
}
public int size () {
return (this.itemset.size());
}
public double getSupport() {
return (this.support);
}
public double getSupportClass() {
return (this.supportRule);
}
public int getClas() {
return (this.clas);
}
public void setClas(int clas) {
this.clas = clas;
}
public boolean isEqual(Itemset a) {
int i;
Item item;
if (this.itemset.size() != a.size()) return (false);
if (this.clas != a.getClas()) return (false);
for (i=0; i < this.itemset.size(); i++) {
item = this.itemset.get(i);
if (!item.isEqual(a.get(i))) return (false);
}
return (true);
}
public void calculateSupports(DataBase dataBase, myDataset train) {
int i;
double degree;
this.support = 0.0;
this.supportRule = 0.0;
for (i = 0; i < train.size(); i++) {
degree = this.degree(dataBase, train.getExample(i));
this.support += degree;
if (train.getOutputAsInteger(i) == this.clas) this.supportRule += degree;
}
this.support /= train.getnData();
this.supportRule /= train.getnData();
}
public double degree(DataBase dataBase, double[] ejemplo) {
return (degreeProduct(dataBase, ejemplo));
}
private double degreeProduct(DataBase dataBase, double[] example) {
double degree;
Item item;
degree = 1.0;
for (int i = 0; i < itemset.size() && degree > 0.0; i++) {
item = itemset.get(i);
degree *= dataBase.matching(item.getVariable(), item.getValue(), example[item.getVariable()]);
}
return (degree);
}
}