/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // ICF.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 15-7-2004. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Instance_Selection.ICF; import keel.Algorithms.Preprocess.Basic.*; import org.core.*; import java.util.StringTokenizer; public class ICF extends Metodo { /*Own parameters of the algorithm*/ private int k; public ICF (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int i, j, l, m; int nClases; int claseObt; boolean marcas[]; int nSel = 0; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; double minDistEnemigo[]; double dist; int reachable[]; int coverage[]; boolean progresa; long tiempo = System.currentTimeMillis(); /*Getting the number of differents classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; /*Inicialization of the flagged instances vector from the S, reachable and coverage sets*/ marcas = new boolean[datosTrain.length]; reachable = new int[datosTrain.length]; coverage = new int[datosTrain.length]; for (i=0; i<datosTrain.length; i++) { marcas[i] = true; reachable[i] = 0; coverage[i] = 0; } nSel = datosTrain.length; /*Inicialization of the matrix of minimum distences of the enemys used for see the adaptability of the instance*/ minDistEnemigo = new double[datosTrain.length]; for (i=0; i<datosTrain.length; i++) { minDistEnemigo[i] = Double.POSITIVE_INFINITY; for (j=0; j<datosTrain.length; j++) { dist = KNN.distancia(datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu); if (clasesTrain[i] != clasesTrain[j] && dist < minDistEnemigo[i]) minDistEnemigo[i] = dist; } } /*Body of the ICF algorithm. First, apply the Wilson filter; then, get the reachable and coverage sets for each instance and compare its sizes for descarting. This process is repited until there is not more descarts.*/ for (i=0; i<datosTrain.length; i++) { /*Apply ENN*/ claseObt = KNN.evaluacionKNN2(k, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], nClases, distanceEu); if (claseObt != clasesTrain[i]) { //incorrect classification, add this instance marcas[i] = false; nSel--; } } do { /*Calculate of reachable and coverage*/ for (i=0; i<datosTrain.length; i++) { if (marcas[i]) { //it is in S set coverage[i] = getCoverage (i, marcas, minDistEnemigo); reachable[i] = getReachable (i, marcas, minDistEnemigo); } } progresa = false; /*Elimination of instances*/ for (i=0; i<datosTrain.length; i++) { if (marcas[i] && reachable[i] > coverage[i]) { marcas[i] = false; nSel--; progresa = true; } } } while (progresa); /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance will be evaluated for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; conjR[l][j] = realTrain[m][j]; conjN[l][j] = nominalTrain[m][j]; conjM[l][j] = nulosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } System.out.println("ICF "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); // COn conjS me vale. int trainRealClass[][]; int trainPrediction[][]; trainRealClass = new int[datosTrain.length][1]; trainPrediction = new int[datosTrain.length][1]; //Working on training for ( i=0; i<datosTrain.length; i++) { trainRealClass[i][0] = clasesTrain[i]; trainPrediction[i][0] = KNN.evaluate(datosTrain[i],conjS, nClases, clasesS, this.k); } KNN.writeOutput(ficheroSalida[0], trainRealClass, trainPrediction, entradas, salida, relation); //Working on test int realClass[][] = new int[datosTest.length][1]; int prediction[][] = new int[datosTest.length][1]; //Check time for (i=0; i<realClass.length; i++) { realClass[i][0] = clasesTest[i]; prediction[i][0]= KNN.evaluate(datosTest[i],conjS, nClases, clasesS, this.k); } KNN.writeOutput(ficheroSalida[1], realClass, prediction, entradas, salida, relation); } /*Function that calculates teh number of elements of the coverage set for an instance*/ private int getCoverage (int actual, boolean marcas[], double minDistEnemigo[]) { int i, suma = 0, adap; for (i=0; i<datosTrain.length; i++) { adap = 0; if (i != actual && marcas[i]) { adap = getAdaptable (actual, i, minDistEnemigo); } suma += adap; } return suma; } /*Function that calculates the number of elements of the reachable set for an instance*/ private int getReachable (int actual, boolean marcas[], double minDistEnemigo[]) { int i, suma = 0, adap; for (i=0; i<datosTrain.length; i++) { adap = 0; if (i != actual && marcas[i]) { adap = getAdaptable (i, actual, minDistEnemigo); } suma += adap; } return suma; } /*Function that indicates if two instances are adaptables*/ private int getAdaptable (int x, int y, double minDistEnemigo[]) { double dist; dist = KNN.distancia(datosTrain[x], realTrain[x], nominalTrain[x], nulosTrain[x], datosTrain[y], realTrain[y], nominalTrain[y], nulosTrain[y], distanceEu); if (dist < minDistEnemigo[x]) return 1; else return 0; } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroValidation = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the number of neighbors*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); k = Integer.parseInt(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; } }