/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.Preprocess.Missing_Values.EventCovering.Stat;
public class LinearRegression {
public void add(double X, double Y) {
x += X; xx += X*X;
y += Y; yy += Y*Y;
xy += X*Y;
n++;
}
public void reset() {
n=0;
x=0;
xx=0;
y=0;
yy=0;
xy=0;
}
public int getN() { return n; }
public double getX() { return x; }
public double getY() { return y; }
public double getXavg() { return x/n; }
public double getYavg() { return y/n; }
public double getXX() { return xx; }
public double getYY() { return yy; }
public double getXY() { return xy; }
public double getXXavg() { return xx/n; }
public double getYYavg() { return yy/n; }
public double getXYavg() { return xy/n; }
public double getSxx() { return xx - x*x/n; }
public double getSyy() { return yy - y*y/n; }
public double getSxy() { return xy - x*y/n; }
// beta1
public double getBeta1() { return getSxy() / getSxx(); }
public double getSlope() { return getBeta1(); }
// beta0
public double getBeta0() { return (y/n) - getSlope() * (x/n); }
public double getIntercept() { return getBeta0(); }
// SSe
public double getSSe() { return getSyy() - getBeta1()*getSxy(); }
public double getErrorSumOfSquares() { return getSSe(); }
public double getSSr() { return getBeta1() * getSyy(); }
// sigma^2
public double getSigmaSq() { return getSSe() / (n-2); }
public double getErrorVariance() { return getSigmaSq(); }
// se(beta1)
public double getSeBeta1() { return Math.sqrt( getSigmaSq() / getSxx()); }
public double getStdErrorSlope() { return getSeBeta1(); }
// se(beta0)
public double getSeBeta0() {
return Math.sqrt( getSigmaSq() * ( 1/n + (x/n) * (x/n) / getSxx()) ); }
public double getStdErrorIntercept() { return getSeBeta0(); }
public double getF0() { return getSSr() / getSigmaSq(); }
// correlation
public double getR() { return getSxy() / Math.sqrt(getSxx() * getSyy()); }
public double getCorrelation() { return getR(); }
//
public double getT0() {
double r = getR();
return r * Math.sqrt(n-2) / Math.sqrt(1 - r*r);
}
private int n = 0;
private double x=0,xx=0,y=0,yy=0,xy=0;
}