/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Neural_Networks.ensemble; import keel.Algorithms.Neural_Networks.net.Parameters; import java.io.InputStream; import java.util.Properties; import java.io.FileInputStream; import java.io.IOException; import org.core.Randomize; /** * <p> * Class representing the parameters of an ensemble * </p> * @author Written by Nicolas Garcia Pedrajas (University of Cordoba) 27/02/2007 * @version 0.1 * @since JDK1.5 */ public class EnsembleParameters extends Parameters { /** Type of sample (NONE | ADA | ARCING | BAGGING) */ String sampling; /** Ensemble method (GEM | BEM) */ String ensemble_method; /** Ensemble combination (WEIGHTED | SUM | MAJORITY | VOTING) */ String combination; /** No of networks */ int n_networks; /** * <p> * Empty constructor * </p> */ public EnsembleParameters() { } /** * {@inheritDoc} */ public void LoadParameters(String file_name) { InputStream paramsFile; String line; int pos2; Properties props = new Properties(); try { paramsFile = new FileInputStream(file_name); props.load(paramsFile); paramsFile.close(); } catch (IOException ioe) { System.out.println("I/O Exception."); System.exit(0); } // Load global parameters Nhidden_layers = Integer.parseInt(props.getProperty("Hidden_layers")); Nhidden = new int[Nhidden_layers + 1]; line = props.getProperty("Hidden_nodes"); System.out.println(line); // Number of nodes per layer int j = 0; int pos1 = 0; do { pos2 = line.indexOf(" ", pos1); if (pos2 != -1) { Nhidden[j] = Integer.parseInt(line.substring(pos1, pos2)); pos1 = pos2 + 1; j++; } else { Nhidden[j] = Integer.parseInt(line.substring(pos1)); j++; } } while (pos2 != -1 && j < Nhidden_layers); for (int i = j; i < Nhidden_layers - 1; i++) { Nhidden[i] = Nhidden[j - 1]; } Nhidden[Nhidden_layers - 1] = Integer.parseInt(line.substring(pos1)); // Learning coefficients eta = Double.parseDouble(props.getProperty("Eta")); alpha = Double.parseDouble(props.getProperty("Alpha")); lambda = Double.parseDouble(props.getProperty("Lambda")); // Transfer functions per layer transfer = new String[Nhidden_layers + 1]; line = props.getProperty("Transfer"); j = pos1 = 0; do { pos2 = line.indexOf(" ", pos1); if (pos2 != -1) { transfer[j] = line.substring(pos1, pos2); pos1 = pos2 + 1; j++; } else { transfer[j] = line.substring(pos1); j++; } } while (pos2 != -1 && j < Nhidden_layers); for (int i = j; i < Nhidden_layers; i++) { transfer[i] = transfer[j - 1]; } transfer[Nhidden_layers] = line.substring(pos1); // threshold = Double.parseDouble(props.getProperty("Threshold")); test_data = Boolean.valueOf(props.getProperty("Test_data")). booleanValue(); val_data = Boolean.valueOf(props.getProperty("Validation_data")). booleanValue(); line = props.getProperty("inputData"); pos1 = line.indexOf("\"", 0); pos2 = line.indexOf("\"", pos1 + 1); train_file = line.substring(pos1 + 1, pos2); pos1 = line.indexOf("\"", pos2 + 1); pos2 = line.indexOf("\"", pos1 + 1); val_file = line.substring(pos1 + 1, pos2); pos1 = line.indexOf("\"", pos2 + 1); pos2 = line.indexOf("\"", pos1 + 1); test_file = line.substring(pos1 + 1, pos2); line = props.getProperty("outputData"); pos1 = line.indexOf("\"", 0); pos2 = line.indexOf("\"", pos1 + 1); train_output = line.substring(pos1 + 1, pos2); pos1 = line.indexOf("\"", pos2 + 1); pos2 = line.indexOf("\"", pos1 + 1); test_output = line.substring(pos1 + 1, pos2); pos1 = line.indexOf("\"", pos2 + 1); pos2 = line.indexOf("\"", pos1 + 1); model_output = line.substring(pos1 + 1, pos2); cross_validation = Boolean.valueOf(props.getProperty("Crossvalidation")). booleanValue(); cycles = Integer.parseInt(props.getProperty("Cycles")); improve = Double.parseDouble(props.getProperty("Improve")); seed = Long.parseLong(props.getProperty("seed")); if (seed != -1) { Randomize.setSeed(seed); } problem = props.getProperty("Problem"); // bp_type = props.getProperty("BPtype"); bp_type = "BPstd"; tipify_inputs = Boolean.valueOf(props.getProperty("Tipify_inputs")). booleanValue(); verbose = Boolean.valueOf(props.getProperty("Verbose")).booleanValue(); save = Boolean.valueOf(props.getProperty("SaveAll")).booleanValue(); n_networks = Integer.parseInt(props.getProperty("Networks")); sampling = props.getProperty("Sampling"); ensemble_method = props.getProperty("Ensemble_method"); combination = props.getProperty("Combination"); } }