/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /*********************************************************************** This file is part of the Fuzzy Instance Based Learning package, a Java package implementing Fuzzy Nearest Neighbor Classifiers as complementary material for the paper: Fuzzy Nearest Neighbor Algorithms: Taxonomy, Experimental analysis and Prospects Copyright (C) 2012 J. Derrac (jderrac@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) F. Herrera (herrera@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * * File: FRNN.java * * The FRNN algorithm. * * @author Written by Joaqu�n Derrac (University of Granada) 13/11/2011 * @version 1.0 * @since JDK1.5 * */ package keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN; import java.text.DecimalFormat; import java.text.DecimalFormatSymbols; import java.util.Arrays; import java.util.StringTokenizer; import org.core.Files; import keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm; import keel.Algorithms.Fuzzy_Instance_Based_Learning.ReportTool; import keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer; import keel.Algorithms.Fuzzy_Instance_Based_Learning.Util; public class FRNN extends FuzzyIBLAlgorithm { private double instance []; private double k []; private double classPosibility []; private final double Q = 2.0; /** * Reads the parameters of the algorithm. * * @param script Configuration script * */ @Override protected void readParameters(String script) { String file; String line; StringTokenizer fileLines, tokens; file = Files.readFile (script); fileLines = new StringTokenizer (file,"\n\r"); //Discard in/out files definition fileLines.nextToken(); fileLines.nextToken(); fileLines.nextToken(); } //end-method /** * Main builder. Initializes the methods' structures * * @param script Configuration script */ public FRNN(String script){ readDataFiles(script); //Naming the algorithm name="Fuzzy Rough nearest neighbor"; instance= new double [inputAtt]; k= new double [inputAtt]; classPosibility= new double [nClasses]; //Initialization of Reporting tool ReportTool.setOutputFile(outFile[2]); } //end-method /** * Generates the model of the algorithm */ public void generateModel (){ int index1,index2; //Start of model time Timer.resetTime(); //End of model time Timer.setModelTime(); //Showing results System.out.println(name+" "+ relation + " Model " + Timer.getModelTime() + "s"); } //end-method private int classifyInstance(int index, boolean train){ int output=-1; double distance; if(train){ System.arraycopy(trainData[index], 0, instance, 0, inputAtt); //compute k array computeKTrain(index); }else{ System.arraycopy(testData[index], 0, instance, 0, inputAtt); //compute k array computeKTest(index); } Arrays.fill(classPosibility,0.0); for(int i=0; i<trainData.length;i++){ if((!train)||(index!=i)){ //compute squared weighted distance distance=0.0; for(int j=0;j<inputAtt;j++){ distance+= k[j]*(instance[j]-trainData[i][j])*(instance[j]-trainData[i][j]); } //crisp classification is assumed for training instances if(!train){ classPosibility[trainOutput[i]]+= Math.exp(Math.pow(-1.0*distance,1.0/(Q-1.0)))/(double)(trainData.length); }else{ classPosibility[trainOutput[i]]+= Math.exp(Math.pow(-1.0*distance,1.0/(Q-1.0)))/(double)(trainData.length-1.0); } } } //compute class of maximum posibility double max=Double.MIN_VALUE; output=-1; for(int c=0;c<nClasses;c++){ if(max<classPosibility[c]){ max=classPosibility[c]; output=c; } } return output; } private void computeKTrain(int index){ double dist; double sum; double exp= 2.0/(Q-1.0); for(int j=0;j<inputAtt;j++){ sum=0.0; for(int i=0;i<trainData.length;i++){ if(i!=index){ dist=trainData[index][j]-trainData[i][j]; dist=Math.pow(dist,exp); sum+=dist; } } if(sum!=0){ k[j]=(double)(trainData.length-1.0)/(2.0*sum); } else{ k[j]=0; } } } private void computeKTest(int index){ double dist; double sum; double exp= 2.0/(Q-1.0); for(int j=0;j<inputAtt;j++){ sum=0.0; for(int i=0;i<trainData.length;i++){ dist=testData[index][j]-trainData[i][j]; dist=Math.pow(dist,exp); sum+=dist; } if(sum!=0){ k[j]=(double)(trainData.length-1.0)/(2.0*sum); } else{ k[j]=0; } } } /** * Classifies the training set (leave-one-out) */ public void classifyTrain(){ //Start of training time Timer.resetTime(); classifyTrainSet(); //End of training time Timer.setTrainingTime(); //Showing results System.out.println(name+" "+ relation + " Training " + Timer.getTrainingTime() + "s"); } //end-method /** * Classifies the test set */ public void classifyTest(){ //Start of training time Timer.resetTime(); classifyTestSet(); //End of test time Timer.setTestTime(); //Showing results System.out.println(name+" "+ relation + " Test " + Timer.getTestTime() + "s"); } //end-method /** * Classifies the training set */ public void classifyTrainSet(){ for(int i=0;i<trainData.length;i++){ trainPrediction[i]=classifyInstance(i,true); } } //end-method /** * Classifies the test set */ public void classifyTestSet(){ for(int i=0;i<testData.length;i++){ testPrediction[i]=classifyInstance(i,false); } } //end-method /** * Reports the results obtained */ public void printReport(){ writeOutput(outFile[0], trainOutput, trainPrediction); writeOutput(outFile[1], testOutput, testPrediction); ReportTool.setResults(trainOutput,trainPrediction,testOutput,testPrediction,nClasses); ReportTool.printReport(); } //end-method } //end-class