/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // TCNN.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 23-2-2008. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Preprocess.Instance_Selection.TCNN; import keel.Algorithms.Preprocess.Basic.*; import org.core.*; import java.util.StringTokenizer; import java.util.Arrays; public class TCNN extends Metodo { /*Own parameters of the algorithm*/ private long semilla; private int k; public TCNN (String ficheroScript) { super (ficheroScript); } public void ejecutar () { double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; int S[]; int i, j, l, m; int nClases; int pos; int baraje[]; int tmp; int tamS; int claseObt; int cont; int busq; boolean continuar; int classAct; boolean setC[]; double exTmp[]; double exReal[]; int exNom[]; boolean exNul[]; double distX; boolean parar; int nSel = 0; double datosC[][]; double realC[][]; int nominalC[][]; boolean nulosC[][]; int clasesC[]; long tiempo = System.currentTimeMillis(); /*Getting the number of different classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; tamS = 0; if (nClases < 2) { System.err.println("Input dataset is empty"); nClases = 0; } /*Modification of Tomek*/ setC = new boolean[datosTrain.length]; Arrays.fill(setC, false); exTmp = new double[datosTrain[0].length]; exReal = new double[datosTrain[0].length]; exNom = new int[datosTrain[0].length]; exNul = new boolean[datosTrain[0].length]; for (i=0; i<datosTrain.length; i++) { classAct = clasesTrain[i]; for (j=i+1; j<datosTrain.length; j++) { if (classAct != clasesTrain[j]) { for (l=0; l<exTmp.length; l++) { exTmp[l] = 0.5*(datosTrain[i][l]+datosTrain[j][l]); exReal[l] = 0.5*(realTrain[i][l]+realTrain[j][l]); exNom[l] = nominalTrain[i][l]; exNul[l] = nulosTrain[i][l] | nulosTrain[j][l]; } distX = KNN.distancia(datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], exTmp, exReal, exNom, exNul, distanceEu); parar = false; for (l=0; l<datosTrain.length && !parar; l++) { if (l != i && l != j) { if (clasesTrain[l] == classAct) { if (KNN.distancia(datosTrain[l], realTrain[l], nominalTrain[l], nulosTrain[l], exTmp, exReal, exNom, exNul, distanceEu) <= distX) { parar = true; } } else { if (KNN.distancia(datosTrain[l], realTrain[l], nominalTrain[l], nulosTrain[l], exTmp, exReal, exNom, exNul, distanceEu) <= distX) { parar = true; } } } } if (!parar) { if (!setC[i]) { setC[i] = true; nSel++; } if (!setC[j]) { setC[j] = true; nSel++; } } } } } /*Build the C set*/ datosC = new double[nSel][datosTrain[0].length]; realC = new double[nSel][datosTrain[0].length]; nominalC = new int[nSel][datosTrain[0].length]; nulosC = new boolean[nSel][datosTrain[0].length]; clasesC = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (setC[m]) { for (j=0; j<datosTrain[0].length; j++) { datosC[l][j] = datosTrain[m][j]; realC[l][j] = realTrain[m][j]; nominalC[l][j] = nominalTrain[m][j]; nulosC[l][j] = nulosTrain[m][j]; } clasesC[l] = clasesTrain[m]; l++; } } /*Inicialization of the candidates set*/ if (datosC.length == 0) { // C is empty datosC = new double[datosTrain.length][datosTrain[0].length]; realC = new double[datosTrain.length][datosTrain[0].length]; nominalC = new int[datosTrain.length][datosTrain[0].length]; nulosC = new boolean[datosTrain.length][datosTrain[0].length]; clasesC = new int[datosTrain.length]; for (m=0, l=0; m<datosTrain.length; m++) { for (j=0; j<datosTrain[0].length; j++) { datosC[l][j] = datosTrain[m][j]; realC[l][j] = realTrain[m][j]; nominalC[l][j] = nominalTrain[m][j]; nulosC[l][j] = nulosTrain[m][j]; } clasesC[l] = clasesTrain[m]; l++; } } S = new int[datosC.length]; for (i=0; i<S.length; i++) S[i] = Integer.MAX_VALUE; /*Inserting an element of each class*/ Randomize.setSeed (semilla); for (i=0; i<nClases; i++) { pos = Randomize.Randint (0, clasesC.length-1); cont = 0; while (cont < clasesC.length && clasesC[pos] != i) { pos = (pos + 1) % clasesC.length; cont++; } if (cont < clasesC.length) { S[tamS] = pos; tamS++; } } /*Algorithm body. We resort randomly the instances of T and compare with the rest of S. If an instance doesn�t classified correctly, it is inserted in S*/ do { continuar = false; baraje = new int[datosC.length]; for (i=0; i<datosC.length; i++) baraje[i] = i; for (i=0; i<datosC.length; i++) { pos = Randomize.Randint (i, clasesC.length-1); tmp = baraje[i]; baraje[i] = baraje[pos]; baraje[pos] = tmp; } for (i=0; i<datosC.length; i++) { /*Construction of the S set from the previous vector S*/ conjS = new double[tamS][datosC[0].length]; conjR = new double[tamS][datosC[0].length]; conjN = new int[tamS][datosC[0].length]; conjM = new boolean[tamS][datosC[0].length]; clasesS = new int[tamS]; for (j = 0; j < tamS; j++) { for (l = 0; l < datosC[0].length; l++) { conjS[j][l] = datosC[S[j]][l]; conjR[j][l] = realC[S[j]][l]; conjN[j][l] = nominalC[S[j]][l]; conjM[j][l] = nulosC[S[j]][l]; } clasesS[j] = clasesC[S[j]]; } Arrays.sort(S); busq = Arrays.binarySearch(S, baraje[i]); if (busq < 0) { /*Do KNN to the instance*/ claseObt = KNN.evaluacionKNN(k, conjS, conjR, conjN, conjM, clasesS, datosC[baraje[i]], realC[baraje[i]], nominalC[baraje[i]], nulosC[baraje[i]], nClases, distanceEu); if (claseObt != clasesC[baraje[i]]) { //fail in the class, it is included in S continuar = true; S[tamS] = baraje[i]; tamS++; } } } } while (continuar == true); /*Construction of the S set from the previous vector S*/ conjS = new double[tamS][datosC[0].length]; conjR = new double[tamS][datosC[0].length]; conjN = new int[tamS][datosC[0].length]; conjM = new boolean[tamS][datosC[0].length]; clasesS = new int[tamS]; for (j=0; j<tamS; j++) { for (l=0; l<datosC[0].length; l++) { conjS[j][l] = datosC[S[j]][l]; conjR[j][l] = realC[S[j]][l]; conjN[j][l] = nominalC[S[j]][l]; conjM[j][l] = nulosC[S[j]][l]; } clasesS[j] = clasesC[S[j]]; } System.out.println("TCNN "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the seed*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); semilla = Long.parseLong(tokens.nextToken().substring(1)); /*Getting the number of neighbors*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); k = Integer.parseInt(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; } }