/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Albert Orriols (La Salle, Ram�n Llull University - Barcelona) 28/03/2004 * @author Modified by Xavi Sol� (La Salle, Ram�n Llull University - Barcelona) 03/12/2008 * @version 1.1 * @since JDK1.2 * </p> */ /* Generated By:JavaCC: Do not edit this line. ParserConstants.java */ package keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser; public interface ParserConstants { int EOF = 0; int COMENT = 6; int COM2 = 7; int PROBLEM = 8; int CLASSIFIER = 9; int PARAMETERS = 10; int INIT = 11; int GA = 12; int REPRESENTATION = 13; int STATISTICS = 14; int REDUCTION = 15; int BEGIN = 16; int END = 17; int XCSI = 18; int TEST = 19; int ALGORITHM = 20; int INPUTDATA = 21; int OUTPUTDATA = 22; int TYPEOFPROBLEM = 23; int NUMBEROFEXPLORES = 24; int SEED = 25; int EXPLORESBETWEENEXPLOITS = 26; int XCSRUN = 27; int TRAINFILE = 28; int POPULATIONFILE = 29; int PROBLEMTYPE = 30; int RUNTYPE = 31; int POPSIZE = 32; int ALPHA = 33; int BETA = 34; int GAMMA = 35; int DELTA = 36; int NU = 37; int THETA_MNA = 38; int THETA_DEL = 39; int THETA_SUB = 40; int EPSILON_0 = 41; int DOASSUBSUMPTION = 42; int PREDICTIONERRORREDUCTION = 43; int FITREDUCTION = 44; int INITIALPREDICITON = 45; int INITIALFITNESS = 46; int INITIALPERROR = 47; int PX = 48; int PM = 49; int THETA_GA = 50; int DOGASUBSUMPTION = 51; int TOURNAMENTSIZE = 52; int TYPEOFMUTATION = 53; int TYPEOFSELECTION = 54; int TYPEOFCROSSOVER = 55; int PERMITWITHINCROSSOVER = 56; int SELECTIONTYPE = 57; int CROSSOVERTYPE = 58; int MUTATIONTYPE = 59; int PDONTCARE = 60; int CLLENGTH = 61; int R_0 = 62; int L_0 = 63; int M_0 = 64; int XCSI_L0 = 65; int XCSI_M0 = 66; int XCSI_R0 = 67; int INTEGER = 68; int SPECIFY = 69; int DOSPECIFY = 70; int PSPECIFY = 71; int NSPECIFY = 72; int DOSTATISTICS = 73; int STATISTICFILEOUTNAME = 74; int STATISTICWINDOWSIZE = 75; int GETOPTIMALPOPULATION = 76; int OPTIMALPOPULATIONFILE = 77; int REALDRAWNPRECISION = 78; int DOTEST = 79; int TESTWINDOW = 80; int SEQUENTIALTEST = 81; int TESTFILE = 82; int NUMBEROFTESTEXAMPLES = 83; int DOREDUCTION = 84; int TYPEOFREDUCTION = 85; int INITREDUCTIONITERATION = 86; int REDUCTWINDOW = 87; int REDUCTEDRULESFILE = 88; int THETA_REDUCT = 89; int EPSILON_REDUCT = 90; int P_REDUCT = 91; int REDUCTIONTYPE = 92; int EQUALS = 93; int PCOMA = 94; int COBERT = 95; int CTANCAT = 96; int COLON = 97; int INT_CONST = 98; int BOOLEAN_CONST = 99; int CAR_CONST = 100; int REAL_CONST = 101; int CAD_CONST = 102; int IDENT = 103; int LLETRA = 104; int DIGIT = 105; int ERR_LEX = 106; int DEFAULT = 0; String[] tokenImage = { "<EOF>", "\" \"", "\"\\t\"", "\"\\b\"", "\"\\n\"", "\"\\r\"", "<COMENT>", "<COM2>", "\"problem\"", "\"classifier\"", "\"parameters\"", "\"init\"", "\"GA\"", "\"representation\"", "\"statistics\"", "\"reduction\"", "\"begin\"", "\"end\"", "\"XCSI\"", "\"test\"", "\"algorithm\"", "\"inputData\"", "\"outputData\"", "\"typeOfProblem\"", "\"numberOfExplores\"", "\"seed\"", "\"exploresBetweenExploits\"", "\"XCSRun\"", "\"trainFile\"", "\"populationFile\"", "<PROBLEMTYPE>", "<RUNTYPE>", "\"popsize\"", "\"alpha\"", "\"beta\"", "\"gamma\"", "\"delta\"", "\"nu\"", "\"theta_mna\"", "\"theta_del\"", "\"theta_sub\"", "\"epsilon_0\"", "\"doASSubsumption\"", "\"predictionErrorReduction\"", "\"fitReduction\"", "\"initialPrediction\"", "\"initialFitness\"", "\"initialPredictionError\"", "\"px\"", "\"pm\"", "\"theta_ga\"", "\"doGASubsumption\"", "\"tournamentSize\"", "\"typeOfMutation\"", "\"typeOfSelection\"", "\"typeOfCrossover\"", "\"permitWithinCrossover\"", "<SELECTIONTYPE>", "<CROSSOVERTYPE>", "<MUTATIONTYPE>", "\"pdontcare\"", "\"clLength\"", "\"r_0\"", "\"l_0\"", "\"m_0\"", "\"XCSI_l0\"", "\"XCSI_m0\"", "\"XCSI_r0\"", "\"integer\"", "\"specify\"", "\"dospecify\"", "\"pspecify\"", "\"nspecify\"", "\"doStatistics\"", "\"statisticFileOutName\"", "\"statisticWindowSize\"", "\"getOptimalPopulation\"", "\"optimalPopulationFile\"", "\"realDrawnPrecision\"", "\"doTest\"", "\"testWindow\"", "\"sequentialTest\"", "\"testFile\"", "\"numberOfTestExamples\"", "\"doReduction\"", "\"typeOfReduction\"", "\"initReductionIteration\"", "\"reductWindow\"", "\"reductedRulesFile\"", "\"theta_reduct\"", "\"epsilon_reduct\"", "\"Preduct\"", "<REDUCTIONTYPE>", "\"=\"", "\";\"", "\"[\"", "\"]\"", "\",\"", "<INT_CONST>", "<BOOLEAN_CONST>", "<CAR_CONST>", "<REAL_CONST>", "<CAD_CONST>", "<IDENT>", "<LLETRA>", "<DIGIT>", "<ERR_LEX>", }; }