/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.MIL.Nearest_Neighbour; import java.util.ArrayList; import java.util.Arrays; import keel.Algorithms.MIL.AbstractMIAlgorithm; import net.sourceforge.jclec.util.dataset.IDataset.IInstance; public abstract class AbstractNearestNeighbour extends AbstractMIAlgorithm { ///////////////////////////////////////////////////////////////// // --------------------------------------------------- Properties ///////////////////////////////////////////////////////////////// protected boolean HausdorffMaxDistance = false; // True -> HausdorffMaxDistance, False -> HausdorffMinDistance protected int numberReferences = 2; ///////////////////////////////////////////////////////////////// // ----------------------------------------------- Public Methods ///////////////////////////////////////////////////////////////// public void setNumberReferences(int numberReferences) { this.numberReferences = numberReferences; } public void setHausdorffMaxDistance(boolean hausdorffMaxDistance) { HausdorffMaxDistance = hausdorffMaxDistance; } ///////////////////////////////////////////////////////////////// // --------------------------------------------- Private Methods ///////////////////////////////////////////////////////////////// protected double distance(double[] instanceA, double[] instanceB) { double result = 0.0; for(int i = 1; i < instanceA.length - 1; i++) { result += Math.pow(instanceA[i] - instanceB[i],2); } return Math.sqrt(result); } protected double HausdorffMaxDistance(ArrayList<IInstance> bagA, ArrayList<IInstance> bagB) { double distance, max = Double.MIN_VALUE; for(int i = 0; i < bagA.size(); i++) { for(int j = 0; j < bagB.size(); j++) { distance = distance(bagA.get(i).getValues(),bagB.get(j).getValues()); if(distance > max) max = distance; } } return max; } protected double HausdorffMinDistance(ArrayList<IInstance> bagA, ArrayList<IInstance> bagB) { double distance, min = Double.MAX_VALUE; for(int i = 0; i < bagA.size(); i++) { for(int j = 0; j < bagB.size(); j++) { distance = distance(bagA.get(i).getValues(),bagB.get(j).getValues()); if(distance < min) min = distance; } } return min; } protected int[] references(ArrayList<IInstance> bag, int numReferences) { double[] distances = new double[trainInstances.size()]; double[] references = new double[trainInstances.size()]; int[] results = new int[numReferences]; if(HausdorffMaxDistance) for(int i = 0; i < trainInstances.size(); i++) distances[i] = HausdorffMaxDistance(bag, trainInstances.get(i)); else for(int i = 0; i < trainInstances.size(); i++) distances[i] = HausdorffMinDistance(bag, trainInstances.get(i)); for(int i = 0; i < trainInstances.size(); i++) references[i] = distances[i]; Arrays.sort(distances); for(int i = 0; i < numReferences; i++) { for(int k = 0; k < trainInstances.size(); k++) { if(distances[i] == references[k]) { results[i] = k; references[k] = -1; break; } } } return results; } }