/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
//
// ENRBF.java
//
// Salvador Garc�a L�pez
//
// Created by Salvador Garc�a L�pez 25-11-2005.
// Copyright (c) 2004 __MyCompanyName__. All rights reserved.
//
package keel.Algorithms.Preprocess.Instance_Selection.ENRBF;
import keel.Algorithms.Preprocess.Basic.*;
import org.core.*;
import java.util.StringTokenizer;
import java.util.Arrays;
public class ENRBF extends Metodo {
/*Own parameters of the algorithm*/
double alpha, sigma;
public ENRBF (String ficheroScript) {
super (ficheroScript);
}
public void ejecutar () {
int i, j, k, l;
int nClases;
boolean marcas[];
int nSel;
double conjS[][];
double conjR[][];
int conjN[][];
boolean conjM[][];
int clasesS[];
double Gtodos[];
double Gtotal;
double probClass[];
double prob;
boolean parar;
boolean valido;
long tiempo = System.currentTimeMillis();
/*Inicialization of the flagged instances vector for a posterior copy*/
marcas = new boolean[datosTrain.length];
Gtodos = new double[datosTrain.length];
for (i=0; i<datosTrain.length; i++)
marcas[i] = true;
nSel = datosTrain.length;
/*Getting the number of different classes*/
nClases = 0;
for (i=0; i<clasesTrain.length; i++)
if (clasesTrain[i] > nClases)
nClases = clasesTrain[i];
nClases++;
probClass = new double[nClases];
/*Body of the algorithm. NRBF estimates probability of k-th class given vector x and a training set.
Eliminate vector only if this probability is lower than other classes*/
for (i=0; i<datosTrain.length; i++) {
Gtotal = 0;
for (j=0; j<datosTrain.length; j++) {
if (i != j) {
Gtodos[j] = G (datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu, sigma);
Gtotal += Gtodos[j];
}
}
Arrays.fill(probClass,0);
for (j=0; j<nClases; j++) {
for (k=0; k<datosTrain.length; k++) {
if (i != k && clasesTrain[k] == j) {
probClass[j] += Gtodos[k] / Gtotal;
}
}
}
/*Eliminate if only his probability is lower than other class*/
parar = false;
prob = 0;
for (j=0; j<nClases && !parar; j++)
if (j == clasesTrain[i]) {
parar = true;
prob = probClass[j];
}
valido = true;
for (j=0; j<nClases && valido; j++) {
if ((probClass[j]*alpha) > prob)
valido = false;
}
if (!valido) {
marcas[i] = false;
nSel--;
}
}
/*Building of the S set from the flags*/
nSel = 0;
for (i=0; i<datosTrain.length; i++)
if (marcas[i]) nSel++;
conjS = new double[nSel][datosTrain[0].length];
conjR = new double[nSel][datosTrain[0].length];
conjN = new int[nSel][datosTrain[0].length];
conjM = new boolean[nSel][datosTrain[0].length];
clasesS = new int[nSel];
for (i=0, l=0; i<datosTrain.length; i++) {
if (marcas[i]) { //the instance will be copied to the solution
for (j=0; j<datosTrain[0].length; j++) {
conjS[l][j] = datosTrain[i][j];
conjR[l][j] = realTrain[i][j];
conjN[l][j] = nominalTrain[i][j];
conjM[l][j] = nulosTrain[i][j];
}
clasesS[l] = clasesTrain[i];
l++;
}
}
System.out.println("ENRBF "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s");
OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation);
OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation);
}
double G (double x[], double rx[], int nx[], boolean mx[], double xi[], double rxi[], int nxi[], boolean mxi[], boolean distanceEu, double sigma) {
double distancia;
distancia = KNN.distancia(x, rx, nx, mx, xi, rxi, nxi, mxi, distanceEu);
distancia *= distancia;
return Math.exp((-1)*distancia/sigma);
}
public void leerConfiguracion (String ficheroScript) {
String fichero, linea, token;
StringTokenizer lineasFichero, tokens;
byte line[];
int i, j;
ficheroSalida = new String[2];
fichero = Fichero.leeFichero (ficheroScript);
lineasFichero = new StringTokenizer (fichero,"\n\r");
lineasFichero.nextToken();
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
token = tokens.nextToken();
/*Getting the names of the training and test files*/
line = token.getBytes();
for (i=0; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroTraining = new String (line,i,j-i);
for (i=j+1; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroTest = new String (line,i,j-i);
/*Getting the path and base name of the results files*/
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
token = tokens.nextToken();
/*Getting the names of output files*/
line = token.getBytes();
for (i=0; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroSalida[0] = new String (line,i,j-i);
for (i=j+1; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroSalida[1] = new String (line,i,j-i);
/*Getting the sigma parameter*/
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
sigma = Double.parseDouble(tokens.nextToken().substring(1));
/*Getting the alpha parameter*/
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
alpha = Double.parseDouble(tokens.nextToken().substring(1));
/*Getting the type of distance function*/
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false;
}
}