/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.Discretizers.Bayesian_Discretizer;
import keel.Dataset.*;
import keel.Algorithms.Genetic_Rule_Learning.Globals.*;
import keel.Algorithms.Discretizers.Basic.*;
/**
* <p>
* This is the main class of the algorithm.
* It gets the configuration script, finds the discretization accordingly to the model, and
* applies it to the data.
*
* @author Written by Victoria Lopez Morales (University of Granada) 17/12/2009
* @version 1.0
* @since JDK1.5
* </p>
*/
public class Main {
/** Creates a new instance of Main */
public Main() {
}
/**
* It runs the algorithm
*
* @param args the command line arguments
*/
public static void main(String[] args) {
ParserParameters.doParse(args[0]);
LogManager.initLogManager();
InstanceSet is=new InstanceSet();
try {
is.readSet(Parameters.trainInputFile,true);
} catch(Exception e) {
LogManager.printErr(e.toString());
System.exit(1);
}
checkDataset();
Discretizer dis;
String name=Parameters.algorithmName;
dis=new BayesianDiscretizer();
dis.buildCutPoints(is);
dis.applyDiscretization(Parameters.trainInputFile,Parameters.trainOutputFile);
dis.applyDiscretization(Parameters.testInputFile,Parameters.testOutputFile);
LogManager.closeLog();
}
static void checkDataset() {
Attribute []outputs=Attributes.getOutputAttributes();
if(outputs.length!=1) {
LogManager.printErr("Only datasets with one output are supported");
System.exit(1);
}
if(outputs[0].getType()!=Attribute.NOMINAL) {
LogManager.printErr("Output attribute should be nominal");
System.exit(1);
}
Parameters.numClasses=outputs[0].getNumNominalValues();
Parameters.numAttributes=Attributes.getInputAttributes().length;
}
}