/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. Sánchez (luciano@uniovi.es) J. Alcalá-Fdez (jalcala@decsai.ugr.es) S. García (sglopez@ujaen.es) A. Fernández (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // SSMA.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 3-10-2005. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Instance_Generation.ICFSFLSDE; import keel.Algorithms.Preprocess.Basic.*; import keel.Algorithms.Instance_Generation.Basic.Prototype; import keel.Algorithms.Instance_Generation.Basic.PrototypeGenerationAlgorithm; import keel.Algorithms.Instance_Generation.Basic.PrototypeSet; import keel.Algorithms.Instance_Generation.utilities.*; import keel.Algorithms.Instance_Generation.Basic.PrototypeGenerator; import keel.Dataset.Attributes; import keel.Dataset.InstanceAttributes; import keel.Dataset.InstanceSet; import org.core.*; import java.util.StringTokenizer; import java.util.Arrays; import java.util.Vector; public class ICFSFLSDE extends Metodo { /*Own parameters of the algorithm*/ private int k; private double semilla; public String Script; // para releer par�metros.. private PrototypeSet trainingDataSet; private PrototypeGenerator generador; //Par�metros DE private int PopulationSize; private int ParticleSize; private int MaxIter; private double ScalingFactor; private double CrossOverRate; private int Strategy; private String CrossoverType; // Binomial, Exponential, Arithmetic protected int numberOfClass; private double tau[] = new double[4]; private double Fl, Fu; private int iterSFGSS; private int iterSFHC; protected int numberOfPrototypes; // Particle size is the percentage protected int numberOfStrategies; // number of strategies in the pool public ICFSFLSDE (String ficheroScript) { super (ficheroScript); } /** * Reads the prototype set from a data file. * @param nameOfFile Name of data file to be read. * @return PrototypeSet built with the data of the file. */ public static PrototypeSet readPrototypeSet(String nameOfFile) { Attributes.clearAll();//BUGBUGBUG InstanceSet training = new InstanceSet(); try { //System.out.print("PROBANDO:\n"+nameOfFile); training.readSet(nameOfFile, true); training.setAttributesAsNonStatic(); InstanceAttributes att = training.getAttributeDefinitions(); Prototype.setAttributesTypes(att); } catch(Exception e) { System.err.println("readPrototypeSet has failed!"); e.printStackTrace(); } return new PrototypeSet(training); } public void inic_vector_sin(int vector[], int without){ for(int i=0; i<vector.length; i++) if(i!=without) vector[i] = i; // Lo inicializo de 1 a n-1 } public void desordenar_vector_sin(int vector[]){ int tmp, pos; for(int i=0; i<vector.length-1; i++){ pos = Randomize.Randint(0, vector.length-1); tmp = vector[i]; vector[i] = vector[pos]; vector[pos] = tmp; } } public PrototypeSet mutant(PrototypeSet population[], int actual, int mejor, double SFi){ PrototypeSet mutant = new PrototypeSet(population.length); PrototypeSet r1,r2,r3,r4,r5, resta, producto, resta2, producto2, result, producto3, resta3; //We need three differents solutions of actual int lista[] = new int[population.length]; inic_vector_sin(lista,actual); desordenar_vector_sin(lista); // System.out.println("Lista = "+lista[0]+","+ lista[1]+","+lista[2]); r1 = population[lista[0]]; r2 = population[lista[1]]; r3 = population[lista[2]]; r4 = population[lista[3]]; r5 = population[lista[4]]; switch(this.Strategy){ case 1: // ViG = Xr1,G + F(Xr2,G - Xr3,G) De rand 1 resta = r2.restar(r3); producto = resta.mulEscalar(SFi); mutant = producto.sumar(r1); break; case 2: // Vig = Xbest,G + F(Xr2,G - Xr3,G) De best 1 resta = r2.restar(r3); producto = resta.mulEscalar(SFi); mutant = population[mejor].sumar(producto); break; case 3: // Vig = ... De rand to best 1 resta = r1.restar(r2); resta2 = population[mejor].restar(population[actual]); producto = resta.mulEscalar(SFi); producto2 = resta2.mulEscalar(SFi); result = population[actual].sumar(producto); mutant = result.sumar(producto2); break; case 4: // DE best 2 resta = r1.restar(r2); resta2 = r3.restar(r4); producto = resta.mulEscalar(SFi); producto2 = resta2.mulEscalar(SFi); result = population[mejor].sumar(producto); mutant = result.sumar(producto2); break; case 5: //DE rand 2 resta = r2.restar(r3); resta2 = r4.restar(r5); producto = resta.mulEscalar(SFi); producto2 = resta2.mulEscalar(SFi); result = r1.sumar(producto); mutant = result.sumar(producto2); break; case 6: //DE rand to best 2 resta = r1.restar(r2); resta2 = r3.restar(r4); resta3 = population[mejor].restar(population[actual]); producto = resta.mulEscalar(SFi); producto2 = resta2.mulEscalar(SFi); producto3 = resta3.mulEscalar(SFi); result = population[actual].sumar(producto); result = result.sumar(producto2); mutant = result.sumar(producto3); break; /*// Para hacer esta estrat�gia, lo que hay que elegir es CrossoverType = Arithmetic * case 7: //DE current to rand 1 resta = r1.restar(population[actual]); resta2 = r2.restar(r3); producto = resta.mulEscalar(RandomGenerator.Randdouble(0, 1)); producto2 = resta2.mulEscalar(this.ScalingFactor); result = population[actual].sumar(producto); mutant = result.sumar(producto2); break; */ } // System.out.println("********Mutante**********"); // mutant.print(); mutant.applyThresholds(); return mutant; } /** * Local Search Fitness Function * */ public double lsff(double Fi, double CRi, PrototypeSet population[], int actual, int mejor){ PrototypeSet resta, producto, mutant; PrototypeSet crossover; double FitnessFi = 0; //Mutation: mutant = new PrototypeSet(population[actual].size()); mutant = mutant(population, actual, mejor, Fi); //Crossover crossover =new PrototypeSet(population[actual]); for(int j=0; j< population[actual].size(); j++){ // For each part of the solution double randNumber = RandomGenerator.Randdouble(0, 1); if(randNumber< CRi){ crossover.set(j, mutant.get(j)); // Overwrite. } } // Compute fitness PrototypeSet nominalPopulation = new PrototypeSet(); nominalPopulation.formatear(crossover); FitnessFi = classficationAccuracy1NN(nominalPopulation,trainingDataSet); return FitnessFi; } /** * SFGSS local Search. * @param population * */ public PrototypeSet SFGSS(PrototypeSet population[], int actual, int mejor, double CRi){ double a=0.1, b=1; double fi1=0, fi2=0, fitnessFi1=0, fitnessFi2=0; double phi = (1+ Math.sqrt(5))/5; double scaling; PrototypeSet crossover, resta, producto, mutant; for (int i=0; i<this.iterSFGSS; i++){ // Computation budjet fi1 = b - (b-a)/phi; fi2 = a + (b-a)/phi; fitnessFi1 = lsff(fi1, CRi, population,actual,mejor); fitnessFi2 = lsff(fi2, CRi,population,actual,mejor); if(fitnessFi1> fitnessFi2){ b = fi2; }else{ a = fi1; } } // End While if(fitnessFi1> fitnessFi2){ scaling = fi1; }else{ scaling = fi2; } //Mutation: mutant = new PrototypeSet(population[actual].size()); mutant = mutant(population, actual, mejor, scaling); //Crossover crossover =new PrototypeSet(population[actual]); for(int j=0; j< population[actual].size(); j++){ // For each part of the solution double randNumber = RandomGenerator.Randdouble(0, 1); if(randNumber< CRi){ crossover.set(j, mutant.get(j)); // Overwrite. } } return crossover; } /** * SFHC local search * */ public PrototypeSet SFHC(PrototypeSet population[], int actual, int mejor, double SFi, double CRi){ double fitnessFi1, fitnessFi2, fitnessFi3, bestFi; PrototypeSet crossover, resta, producto, mutant; double h= 0.5; for (int i=0; i<this.iterSFHC; i++){ // Computation budjet fitnessFi1 = lsff(SFi-h, CRi, population,actual,mejor); fitnessFi2 = lsff(SFi, CRi, population,actual,mejor); fitnessFi3 = lsff(SFi+h, CRi, population,actual,mejor); if(fitnessFi1 >= fitnessFi2 && fitnessFi1 >= fitnessFi3){ bestFi = SFi-h; }else if(fitnessFi2 >= fitnessFi1 && fitnessFi2 >= fitnessFi3){ bestFi = SFi; h = h/2; // H is halved. }else{ bestFi = SFi; } SFi = bestFi; } //Mutation: mutant = new PrototypeSet(population[actual].size()); mutant = mutant(population, actual, mejor, SFi); //Crossover crossover = new PrototypeSet(population[actual]); for(int j=0; j< population[actual].size(); j++){ // For each part of the solution double randNumber = RandomGenerator.Randdouble(0, 1); if(randNumber< CRi){ crossover.set(j, mutant.get(j)); // Overwrite. } } return crossover; } /** * Implements the 1NN algorithm * @param current Prototype which the algorithm will find its nearest-neighbor. * @param dataSet Prototype set in which the algorithm will search. * @return Nearest prototype to current in the prototype set dataset. */ public static Prototype _1nn(Prototype current, PrototypeSet dataSet) { Prototype nearestNeighbor = dataSet.get(0); int indexNN = 0; //double minDist = Distance.dSquared(current, nearestNeighbor); //double minDist = Distance.euclideanDistance(current, nearestNeighbor); double minDist =Double.POSITIVE_INFINITY; double currDist; int _size = dataSet.size(); // System.out.println("****************"); // current.print(); for (int i=0; i<_size; i++) { Prototype pi = dataSet.get(i); //if(!current.equals(pi)) //{ // double currDist = Distance.dSquared(current, pi); currDist = Distance.euclideanDistance(pi,current); // System.out.println(currDist); if(currDist >0){ if (currDist < minDist) { minDist = currDist; // nearestNeighbor = pi; indexNN =i; } } //} } // System.out.println("Min dist =" + minDist + " Vecino Cercano = "+ indexNN); return dataSet.get(indexNN); } public double classficationAccuracy1NN(PrototypeSet training, PrototypeSet test) { int wellClassificated = 0; for(Prototype p : test) { Prototype nearestNeighbor = _1nn(p, training); if(p.getOutput(0) == nearestNeighbor.getOutput(0)) ++wellClassificated; } return 100.0* (wellClassificated / (double)test.size()); } /** * Generate a reduced prototype set by the SADEGenerator method. * @return Reduced set by SADEGenerator's method. */ public PrototypeSet reduceSet(PrototypeSet initial) { System.out.print("\nThe algorithm SFLSDE is starting...\n Computing...\n"); //Algorithm // First, we create the population, with PopulationSize. // like a prototypeSet's vector. PrototypeSet population [] = new PrototypeSet [PopulationSize]; PrototypeSet mutation[] = new PrototypeSet[PopulationSize]; PrototypeSet crossover[] = new PrototypeSet[PopulationSize]; double ScalingFactor[] = new double[this.PopulationSize]; double CrossOverRate[] = new double[this.PopulationSize]; // Inside of the Optimization process. double fitness[] = new double[PopulationSize]; double fitness_bestPopulation[] = new double[PopulationSize]; PrototypeSet bestParticle = new PrototypeSet(); //Each particle must have Particle Size % // First Stage, Initialization. PrototypeSet nominalPopulation; population[0]= new PrototypeSet(initial.clone()) ; generador = new PrototypeGenerator(trainingDataSet); nominalPopulation = new PrototypeSet(); nominalPopulation.formatear(population[0]); fitness[0] = classficationAccuracy1NN(nominalPopulation,trainingDataSet); System.out.println("Best initial fitness = "+ fitness[0]); this.numberOfClass = trainingDataSet.getPosibleValuesOfOutput().size(); for(int i=1; i< PopulationSize; i++){ population[i] = new PrototypeSet(); for(int j=0; j< population[0].size(); j++){ Prototype aux = new Prototype(trainingDataSet.getFromClass(population[0].get(j).getOutput(0)).getRandom()); population[i].add(aux); } nominalPopulation = new PrototypeSet(); nominalPopulation.formatear(population[i]); fitness[i] = classficationAccuracy1NN(population[i],trainingDataSet); // PSOfitness fitness_bestPopulation[i] = fitness[i]; // Initially the same fitness. } //We select the best initial particle double bestFitness=fitness[0]; int bestFitnessIndex=0; for(int i=1; i< PopulationSize;i++){ if(fitness[i]>bestFitness){ bestFitness = fitness[i]; bestFitnessIndex=i; } } for(int j=0;j<PopulationSize;j++){ //Now, I establish the index of each prototype. for(int i=0; i<population[j].size(); ++i) population[j].get(i).setIndex(i); } // Initially the Scaling Factor and crossover for each Individual are randomly generated between 0 and 1. for(int i=0; i< this.PopulationSize; i++){ ScalingFactor[i] = RandomGenerator.Randdouble(0, 1); CrossOverRate[i] = RandomGenerator.Randdouble(0, 1); } double randj[] = new double[5]; for(int iter=0; iter< MaxIter; iter++){ // Main loop for(int i=0; i<PopulationSize; i++){ // Generate randj for j=1 to 5. for(int j=0; j<5; j++){ randj[j] = RandomGenerator.Randdouble(0, 1); } if(i==bestFitnessIndex && randj[4] < tau[2]){ // System.out.println("SFGSS applied"); //SFGSS crossover[i] = SFGSS(population, i, bestFitnessIndex, CrossOverRate[i]); }else if(i==bestFitnessIndex && tau[2] <= randj[4] && randj[4] < tau[3]){ //SFHC //System.out.println("SFHC applied"); crossover[i] = SFHC(population, i, bestFitnessIndex, ScalingFactor[i], CrossOverRate[i]); }else { // Fi update if(randj[1] < tau[0]){ ScalingFactor[i] = this.Fl + this.Fu*randj[0]; } // CRi update if(randj[3] < tau[1]){ CrossOverRate[i] = randj[2]; } // Mutation Operation. mutation[i] = new PrototypeSet(population[i].size()); //Mutation: mutation[i] = mutant(population, i, bestFitnessIndex, ScalingFactor[i]); // Crossver Operation. crossover[i] = new PrototypeSet(population[i]); for(int j=0; j< population[i].size(); j++){ // For each part of the solution double randNumber = RandomGenerator.Randdouble(0, 1); if(randNumber<CrossOverRate[i]){ crossover[i].set(j, mutation[i].get(j)); // Overwrite. } } } // Fourth: Selection Operation. nominalPopulation = new PrototypeSet(); nominalPopulation.formatear(population[i]); fitness[i] = classficationAccuracy1NN(nominalPopulation,trainingDataSet); nominalPopulation = new PrototypeSet(); nominalPopulation.formatear(crossover[i]); double trialVector = classficationAccuracy1NN(nominalPopulation,trainingDataSet); if(trialVector > fitness[i]){ population[i] = new PrototypeSet(crossover[i]); fitness[i] = trialVector; } if(fitness[i]>bestFitness){ bestFitness = fitness[i]; bestFitnessIndex=i; } } } nominalPopulation = new PrototypeSet(); nominalPopulation.formatear(population[bestFitnessIndex]); System.err.println("\n% de acierto en training Nominal " + classficationAccuracy1NN(nominalPopulation,trainingDataSet) ); // nominalPopulation.print(); return nominalPopulation; } /* MEzcla de algoritmos */ public void ejecutar () { int i, j, l, m; int nClases; int claseObt; boolean marcas[]; int nSel = 0; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; double minDistEnemigo[]; double dist; int reachable[]; int coverage[]; boolean progresa; long tiempo = System.currentTimeMillis(); /*Getting the number of differents classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; /*Inicialization of the flagged instances vector from the S, reachable and coverage sets*/ marcas = new boolean[datosTrain.length]; reachable = new int[datosTrain.length]; coverage = new int[datosTrain.length]; for (i=0; i<datosTrain.length; i++) { marcas[i] = true; reachable[i] = 0; coverage[i] = 0; } nSel = datosTrain.length; /*Inicialization of the matrix of minimum distences of the enemys used for see the adaptability of the instance*/ minDistEnemigo = new double[datosTrain.length]; for (i=0; i<datosTrain.length; i++) { minDistEnemigo[i] = Double.POSITIVE_INFINITY; for (j=0; j<datosTrain.length; j++) { dist = KNN.distancia(datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu); if (clasesTrain[i] != clasesTrain[j] && dist < minDistEnemigo[i]) minDistEnemigo[i] = dist; } } /*Body of the ICF algorithm. First, apply the Wilson filter; then, get the reachable and coverage sets for each instance and compare its sizes for descarting. This process is repited until there is not more descarts.*/ for (i=0; i<datosTrain.length; i++) { /*Apply ENN*/ claseObt = KNN.evaluacionKNN2(k, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], nClases, distanceEu); if (claseObt != clasesTrain[i]) { //incorrect classification, add this instance marcas[i] = false; nSel--; } } do { /*Calculate of reachable and coverage*/ for (i=0; i<datosTrain.length; i++) { if (marcas[i]) { //it is in S set coverage[i] = getCoverage (i, marcas, minDistEnemigo); reachable[i] = getReachable (i, marcas, minDistEnemigo); } } progresa = false; /*Elimination of instances*/ for (i=0; i<datosTrain.length; i++) { if (marcas[i] && reachable[i] > coverage[i]) { marcas[i] = false; nSel--; progresa = true; } } } while (progresa); /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance will be evaluated for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; conjR[l][j] = realTrain[m][j]; conjN[l][j] = nominalTrain[m][j]; conjM[l][j] = nulosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); /** AHORA A�ADO MI DE!! **/ Parameters.assertBasicArgs(ficheroSalida); PrototypeGenerationAlgorithm.readParametersFile(this.Script); PrototypeGenerationAlgorithm.printParameters(); PrototypeSet training = readPrototypeSet(ficheroSalida[0]); // training.print(); // Conjunto devuelto POR SSMA trainingDataSet = readPrototypeSet(this.ficheroTraining); // Conjunto inicial // trainingDataSet.print(); //this.numberOfPrototypes = (int)Math.floor((trainingDataSet.size())*ParticleSize/100.0); PrototypeSet SADE = reduceSet(training); // LLAMO al SADE SADE.save(ficheroSalida[0]); // Lo guardo //Copy the test input file to the output test file // KeelFile.copy(inputFilesPath.get(TEST), outputFilesPath.get(TEST)); System.out.println("Time elapse:" + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); // COn conjS me vale. int trainRealClass[][]; int trainPrediction[][]; trainRealClass = new int[datosTrain.length][1]; trainPrediction = new int[datosTrain.length][1]; //Working on training for ( i=0; i<datosTrain.length; i++) { trainRealClass[i][0] = clasesTrain[i]; trainPrediction[i][0] = KNN.evaluate(datosTrain[i],SADE.prototypeSetTodouble(), nClases, SADE.getClases(), 1); } KNN.writeOutput(ficheroSalida[0], trainRealClass, trainPrediction, entradas, salida, relation); //Working on test int realClass[][] = new int[datosTest.length][1]; int prediction[][] = new int[datosTest.length][1]; //Check time for (i=0; i<realClass.length; i++) { realClass[i][0] = clasesTest[i]; prediction[i][0]= KNN.evaluate(datosTest[i],SADE.prototypeSetTodouble(), nClases, SADE.getClases(), 1); } KNN.writeOutput(ficheroSalida[1], realClass, prediction, entradas, salida, relation); } /*Function that calculates teh number of elements of the coverage set for an instance*/ private int getCoverage (int actual, boolean marcas[], double minDistEnemigo[]) { int i, suma = 0, adap; for (i=0; i<datosTrain.length; i++) { adap = 0; if (i != actual && marcas[i]) { adap = getAdaptable (actual, i, minDistEnemigo); } suma += adap; } return suma; } /*Function that calculates the number of elements of the reachable set for an instance*/ private int getReachable (int actual, boolean marcas[], double minDistEnemigo[]) { int i, suma = 0, adap; for (i=0; i<datosTrain.length; i++) { adap = 0; if (i != actual && marcas[i]) { adap = getAdaptable (i, actual, minDistEnemigo); } suma += adap; } return suma; } /*Function that indicates if two instances are adaptables*/ private int getAdaptable (int x, int y, double minDistEnemigo[]) { double dist; dist = KNN.distancia(datosTrain[x], realTrain[x], nominalTrain[x], nulosTrain[x], datosTrain[y], realTrain[y], nominalTrain[y], nulosTrain[y], distanceEu); if (dist < minDistEnemigo[x]) return 1; else return 0; } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the name of training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroValidation = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); //Parameters.assertBasicArgs(ficheroSalida); /*Obtainin the path and the base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the name of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the seed*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); semilla = Long.parseLong(tokens.nextToken().substring(1)); /*Getting the number of neighbors*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); k = Integer.parseInt(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.PopulationSize = Integer.parseInt(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.MaxIter = Integer.parseInt(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.iterSFGSS = Integer.parseInt(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.iterSFHC = Integer.parseInt(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.Fl = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.Fu = Double.parseDouble(tokens.nextToken().substring(1)); tau = new double[4]; linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.tau[0] = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.tau[1] = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.tau[2] = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.tau[3] = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); this.Strategy = Integer.parseInt(tokens.nextToken().substring(1)); } }